有时候我们会遇到一类问题:求$f(n)$,当然它是不好直接计算的,但如果$F(n)=\sum\limits_{d|n}f(d)$或$F(n)=\sum\limits_{\substack{n|d\\d\leq m}}f(d)$更易于计算,我们可以用莫比乌斯反演推导出$f(n)$关于$F(n)$的表达式并求值

先定义莫比乌斯函数,若$n=\prod\limits_{i=1}^kp_i^{e_i}$,则莫比乌斯函数$\mu(n)=\begin{cases}1&n=1\\0&\exists e_i\geq2\\\left(-1\right)^k&\forall e_i=1\end{cases}$

从定义可以看出,如果一个整数$n(n\geq2)$含平方因子,那么$\mu(n)=0$,反之,如果它由互异质数相乘而得,那么$质因子个数\mu(n)=(-1)^{\text{质因子个数}}$

莫比乌斯反演定理的一种形式可以描述为“若$F(n)=\sum\limits_{d|n}f(d)$,则$f(n)=\sum\limits_{d|n}\mu(d)F\left(\dfrac nd\right)$”,接下来我们慢慢证明

先证明一个关于莫比乌斯函数的定理:$\sum\limits_{d|n}\mu(d)=[n=1]$,证明如下

当$n=1$时,显然成立

当$n\gt1$,因为对和式有贡献的$d$只可能是从$p_{1\cdots k}$中选取一些不重复的数相乘,所以(选取$i$个数的乘积作为$d$)对和式的贡献是$\binom ki(-1)^i$,所以有如下推导

$$\begin{align*}\sum\limits_{d|n}\mu(d)&=\sum\limits_{i=0}^k\binom ki(-1)^i\\&=1+\sum\limits_{i=1}^k\left(\binom{k-1}{i-1}+\binom{k-1}i\right)(-1)^i\\&=1-\binom{k-1}0+\binom{k-1}k(-1)^k\\&=0\end{align*}$$

有了这个定理,我们就可以证明莫比乌斯反演定理了

$$\begin{align*}\sum\limits_{d|n}\mu(d)F(\dfrac nd)&=\sum\limits_{d|n}\mu(d)\sum\limits_{k|\frac nd}f(k)\\&=\sum\limits_{d|n}\sum\limits_{kd|n}\mu(d)f(k)\\&=\sum\limits_{k=1}^n\sum\limits_{\substack{d|n\\kd|n}}\mu(d)f(k)\\&=\sum\limits_{k=1}^nf(k)\sum\limits_{d|\frac nk}\mu(d)\\&=\sum\limits_{k=1}^nf(k)\left[\dfrac nk=1\right]\\&=f(n)\end{align*}$$

也就是如果$1$和$f$的狄利克雷卷积是$F$,那么$F$和$\mu$的狄利克雷卷积是$f$

这个定理有另一个形式$F(n)=\sum\limits_{n|d}f(d)\Rightarrow f(n)=\sum\limits_{n|d}\mu\left(\dfrac dn\right)F(d)$

因为是倍数和,这里约定$d\leq m$,它的证明是类似的

$$\begin{align*}\sum\limits_{n|d}\mu\left(\dfrac dn\right)F(d)&=\sum\limits_{n|d}\mu\left(\dfrac dn\right)\sum\limits_{d|k}f(k)\\&=\sum\limits_{k=1}^mf(k)\sum\limits_{\substack{n|d\\d|k}}\mu\left(\dfrac dn\right)\\&=\sum\limits_{k=1}^mf(k)\sum\limits_{\frac dn|\frac kn}\mu\left(\dfrac dn\right)\\&=f(n)\end{align*}$$

这个定理可以证明一条联系莫比乌斯函数和欧拉函数的式子,令$f(n)=\varphi(n)$,则$F(n)=n$,用反演定理的形式一可以得到$\varphi(n)=\sum\limits_{d|n}\mu(d)\dfrac nd$,整理得$\dfrac{\varphi(n)}n=\sum\limits_{d|n}\dfrac{\mu(d)}d$,挺优美的

实际做题的时候不一定要用上面的形式,也可以把$[n=1]$换成$\sum\limits_{d|n}\mu(d)$,看能否方便后续计算

下面是真正的应用了:用它来做题

这题要求$\sum\limits_{x=1}^a\sum\limits_{y=1}^b\left[\gcd(x,y)=k\right]$,转化一下就是$\sum\limits_{x=1}^{\left\lfloor\frac ak\right\rfloor}\sum\limits_{y=1}^{\left\lfloor\frac bk\right\rfloor}\left[\gcd(x,y)=1\right]$,于是我们令$f(n)=\sum\limits_{x=1}^{\left\lfloor\frac ak\right\rfloor}\sum\limits_{y=1}^{\left\lfloor\frac bk\right\rfloor}\left[\gcd(x,y)=n\right]$

考虑用反演定理的形式二,得到$F(n)=\sum\limits_{x=1}^{\left\lfloor\frac ak\right\rfloor}\sum\limits_{y=1}^{\left\lfloor\frac bk\right\rfloor}\left[n|\gcd(x,y)\right]=\left\lfloor\dfrac {\left\lfloor\frac ak\right\rfloor}n\right\rfloor\left\lfloor\dfrac{\left\lfloor\frac bk\right\rfloor}n\right\rfloor$,于是$f(n)=\sum\limits_{\substack{n|d\\d\leq\min\left\{\left\lfloor\frac ak\right\rfloor,\left\lfloor\frac bk\right\rfloor\right\}}}\mu\left(\dfrac dn\right)\left\lfloor\dfrac a{kd}\right\rfloor\left\lfloor\dfrac b{kd}\right\rfloor$

答案是$f(1)=\sum\limits_{d=1}^{\min\left\{\left\lfloor\frac ak\right\rfloor,\left\lfloor\frac bk\right\rfloor\right\}}\mu(d)\left\lfloor\dfrac a{kd}\right\rfloor\left\lfloor\dfrac b{kd}\right\rfloor$

学习了一种新的更简洁的写法,这种写法用一种特殊的技巧来快速枚举$d$使得每迭代一次$\left\lfloor\dfrac nd\right\rfloor$就改变一次

for(i=1;i<=n;i=nex+1){
	nex=n/(n/i);
	//计算[i,nex]的答案
}

循环内的第一行是最重要的,原理大概是这样

假设当$i\in[l,r]$时$\left\lfloor\dfrac ni\right\rfloor=k$且$\left\lfloor\dfrac n{r+1}\right\rfloor\lt k$,那么因为$\left\lfloor\dfrac nr\right\rfloor=k$所以$\left\lfloor\dfrac{\frac nk}r\right\rfloor=1$,所以$\dfrac nk\geq r$

如果$\dfrac nk\geq r+1$,那么$\dfrac n{r+1}\geq k$,这与$\left\lfloor\dfrac n{r+1}\right\rfloor\lt k$矛盾

所以$r\leq\dfrac nk\lt r+1$,即$\left\lfloor\dfrac nk\right\rfloor=r$

这样就解释清楚了为什么要这样写,整个题就做完了

#include<stdio.h>
#define ll long long
#define T 50000
int pr[50010],mu[50010];
bool np[50010];
void sieve(){
	int i,j,m;
	m=0;
	np[1]=1;
	mu[1]=1;
	for(i=2;i<=T;i++){
		if(!np[i]){
			m++;
			pr[m]=i;
			mu[i]=-1;
		}
		for(j=1;j<=m;j++){
			if(pr[j]*(ll)i>T)break;
			np[i*pr[j]]=1;
			if(i%pr[j]==0){
				mu[i*pr[j]]=0;
				break;
			}else
				mu[i*pr[j]]=-mu[i];
		}
	}
	for(i=2;i<=T;i++)mu[i]+=mu[i-1];
}
int a,b;
int min(int a,int b){return a<b?a:b;}
void swap(int&a,int&b){a^=b^=a^=b;}
int F(int n){return(a/n)*(b/n);}
int mob(){
	int i,s=0,nex;
	if(a>b)swap(a,b);
	for(i=1;i<=a;i=nex+1){
		nex=min(a/(a/i),b/(b/i));
		s+=F(i)*(mu[nex]-mu[i-1]);
	}
	return s;
}
int main(){
	sieve();
	int t,d;
	scanf("%d",&t);
	while(t--){
		scanf("%d%d%d",&a,&b,&d);
		a/=d;
		b/=d;
		printf("%d\n",mob());
	}
}

感觉写太多字了,有点肝不动...

[luogu3455]ZAP-Queries的更多相关文章

  1. 【Luogu3455】【POI2007】ZAP-Queries(莫比乌斯反演)

    [Luogu3455][POI2007]ZAP-Queries(莫比乌斯反演) 题面 题目描述 FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x ...

  2. 实践 HTML5 的 CSS3 Media Queries

    先来介绍下 media,确切的说应该是 CSS media queries(CSS 媒体查询),媒体查询包含了一个媒体类型和至少一个使用如宽度.高度和颜色等媒体属性来限制样式表范围的表达式.CSS3 ...

  3. SQL Server 阻止了对组件 'Ad Hoc Distributed Queries' 的 STATEMENT'OpenRowset/OpenDatasource' 的访问

    delphi ado 跨数据库访问 语句如下 ' and db = '帐套1' 报错内容是:SQL Server 阻止了对组件 'Ad Hoc Distributed Queries' 的 STATE ...

  4. CSS3 Media Queries 实现响应式设计

    在 CSS2 中,你可以为不同的媒介设备(如屏幕.打印机)指定专用的样式表,而现在借助 CSS3 的 Media Queries 特性,可以更为有效的实现这个功能.你可以为媒介类型添加某些条件,检测设 ...

  5. 使用CSS3 Media Queries实现网页自适应

    原文来源:http://webdesignerwall.com 翻译:http://xinyo.org 当今银屏分辨率从 320px (iPhone)到 2560px (大屏显示器)或者更大.人们也不 ...

  6. SQL Queries from Transactional Plugin Pipeline

    Sometimes the LINQ, Query Expressions or Fetch just doesn't give you the ability to quickly query yo ...

  7. Media Queries 详解

    Media Queries直译过来就是“媒体查询”,在我们平时的Web页面中head部分常看到这样的一段代码:  <link href="css/reset.css" rel ...

  8. SPOJ GSS3 Can you answer these queries III[线段树]

    SPOJ - GSS3 Can you answer these queries III Description You are given a sequence A of N (N <= 50 ...

  9. SPOJ GSS1 Can you answer these queries I[线段树]

    Description You are given a sequence A[1], A[2], ..., A[N] . ( |A[i]| ≤ 15007 , 1 ≤ N ≤ 50000 ). A q ...

  10. 【Codeforces710F】String Set Queries (强制在线)AC自动机 + 二进制分组

    F. String Set Queries time limit per test:3 seconds memory limit per test:768 megabytes input:standa ...

随机推荐

  1. spring中Constructor、@Autowired、@PostConstruct的顺序【转】

    其实从依赖注入的字面意思就可以知道,要将对象p注入到对象a,那么首先就必须得生成对象p与对象a,才能执行注入.所以,如果一个类A中有个成员变量p被@Autowired注解,那么@Autowired注入 ...

  2. 移动端H5滚动穿透解决方案

    最近遇到一个很 巨恶心的问题  ios10下面 页面弹窗有滚动穿透问题 各种google 终于找到了答案,但是体验还不是很好,基本能忍受 废话不多说,上方法 最后终于想到一个处理方案,就是第一种方案的 ...

  3. 从零开始学习MXnet(一)

    最近工作要开始用到MXnet,然而MXnet的文档写的实在是.....所以在这记录点东西,方便自己,也方便大家. 我觉得搞清楚一个框架怎么使用,第一步就是用它来训练自己的数据,这是个很关键的一步. 一 ...

  4. 洛谷P1522 牛的旅行 Cow Tours

    ---恢复内容开始--- P1522 牛的旅行 Cow Tours189通过502提交题目提供者该用户不存在标签 图论 USACO难度 提高+/省选-提交该题 讨论 题解 记录 最新讨论 输出格式题目 ...

  5. [模拟赛] StopAllSounds

    Description 小松鼠开心地在树之间跳跃着,突然她停了下来.因为眼前出现了一个 拿着专克超萌小松鼠的法宝----超萌游戏机的游客! 超萌游戏机之所以拥有这个名字,是因为它的屏幕是一个n × 2 ...

  6. 前缀统计 [Trie]

    前缀统计 描述 给定N个字符串S1,S2...SN,接下来进行M次询问,每次询问给定一个字符串T,求S1-SN中有多少个字符串是T的前缀.输入字符串的总长度不超过10^6,仅包含小写字母. 输入格式 ...

  7. poj 2104 (划分树模板)

    Description You are working for Macrohard company in data structures department. After failing your ...

  8. JS模块化工具requirejs教程02

    基本API require会定义三个变量:define,require,requirejs,其中require === requirejs,一般使用require更简短 define 从名字就可以看出 ...

  9. MyBatis的SQL语句映射文件详解

    SQL 映射XML 文件是所有sql语句放置的地方.需要定义一个workspace,一般定义为对应的接口类的路径.写好SQL语句映射文件后,需要在MyBAtis配置文件mappers标签中引用 < ...

  10. PHP中HTTP_X_FORWARDED_FOR、REMOTE_ADDR和HTTP_CLIENT_IP

    1.REMOTE_ADDR:浏览当前页面的用户计算机的ip地址 2.HTTP_X_FORWARDED_FOR: 浏览当前页面的用户计算机的网关 3.HTTP_CLIENT_IP:客户端的ip 在PHP ...