有时候我们会遇到一类问题:求$f(n)$,当然它是不好直接计算的,但如果$F(n)=\sum\limits_{d|n}f(d)$或$F(n)=\sum\limits_{\substack{n|d\\d\leq m}}f(d)$更易于计算,我们可以用莫比乌斯反演推导出$f(n)$关于$F(n)$的表达式并求值

先定义莫比乌斯函数,若$n=\prod\limits_{i=1}^kp_i^{e_i}$,则莫比乌斯函数$\mu(n)=\begin{cases}1&n=1\\0&\exists e_i\geq2\\\left(-1\right)^k&\forall e_i=1\end{cases}$

从定义可以看出,如果一个整数$n(n\geq2)$含平方因子,那么$\mu(n)=0$,反之,如果它由互异质数相乘而得,那么$质因子个数\mu(n)=(-1)^{\text{质因子个数}}$

莫比乌斯反演定理的一种形式可以描述为“若$F(n)=\sum\limits_{d|n}f(d)$,则$f(n)=\sum\limits_{d|n}\mu(d)F\left(\dfrac nd\right)$”,接下来我们慢慢证明

先证明一个关于莫比乌斯函数的定理:$\sum\limits_{d|n}\mu(d)=[n=1]$,证明如下

当$n=1$时,显然成立

当$n\gt1$,因为对和式有贡献的$d$只可能是从$p_{1\cdots k}$中选取一些不重复的数相乘,所以(选取$i$个数的乘积作为$d$)对和式的贡献是$\binom ki(-1)^i$,所以有如下推导

$$\begin{align*}\sum\limits_{d|n}\mu(d)&=\sum\limits_{i=0}^k\binom ki(-1)^i\\&=1+\sum\limits_{i=1}^k\left(\binom{k-1}{i-1}+\binom{k-1}i\right)(-1)^i\\&=1-\binom{k-1}0+\binom{k-1}k(-1)^k\\&=0\end{align*}$$

有了这个定理,我们就可以证明莫比乌斯反演定理了

$$\begin{align*}\sum\limits_{d|n}\mu(d)F(\dfrac nd)&=\sum\limits_{d|n}\mu(d)\sum\limits_{k|\frac nd}f(k)\\&=\sum\limits_{d|n}\sum\limits_{kd|n}\mu(d)f(k)\\&=\sum\limits_{k=1}^n\sum\limits_{\substack{d|n\\kd|n}}\mu(d)f(k)\\&=\sum\limits_{k=1}^nf(k)\sum\limits_{d|\frac nk}\mu(d)\\&=\sum\limits_{k=1}^nf(k)\left[\dfrac nk=1\right]\\&=f(n)\end{align*}$$

也就是如果$1$和$f$的狄利克雷卷积是$F$,那么$F$和$\mu$的狄利克雷卷积是$f$

这个定理有另一个形式$F(n)=\sum\limits_{n|d}f(d)\Rightarrow f(n)=\sum\limits_{n|d}\mu\left(\dfrac dn\right)F(d)$

因为是倍数和,这里约定$d\leq m$,它的证明是类似的

$$\begin{align*}\sum\limits_{n|d}\mu\left(\dfrac dn\right)F(d)&=\sum\limits_{n|d}\mu\left(\dfrac dn\right)\sum\limits_{d|k}f(k)\\&=\sum\limits_{k=1}^mf(k)\sum\limits_{\substack{n|d\\d|k}}\mu\left(\dfrac dn\right)\\&=\sum\limits_{k=1}^mf(k)\sum\limits_{\frac dn|\frac kn}\mu\left(\dfrac dn\right)\\&=f(n)\end{align*}$$

这个定理可以证明一条联系莫比乌斯函数和欧拉函数的式子,令$f(n)=\varphi(n)$,则$F(n)=n$,用反演定理的形式一可以得到$\varphi(n)=\sum\limits_{d|n}\mu(d)\dfrac nd$,整理得$\dfrac{\varphi(n)}n=\sum\limits_{d|n}\dfrac{\mu(d)}d$,挺优美的

实际做题的时候不一定要用上面的形式,也可以把$[n=1]$换成$\sum\limits_{d|n}\mu(d)$,看能否方便后续计算

下面是真正的应用了:用它来做题

这题要求$\sum\limits_{x=1}^a\sum\limits_{y=1}^b\left[\gcd(x,y)=k\right]$,转化一下就是$\sum\limits_{x=1}^{\left\lfloor\frac ak\right\rfloor}\sum\limits_{y=1}^{\left\lfloor\frac bk\right\rfloor}\left[\gcd(x,y)=1\right]$,于是我们令$f(n)=\sum\limits_{x=1}^{\left\lfloor\frac ak\right\rfloor}\sum\limits_{y=1}^{\left\lfloor\frac bk\right\rfloor}\left[\gcd(x,y)=n\right]$

考虑用反演定理的形式二,得到$F(n)=\sum\limits_{x=1}^{\left\lfloor\frac ak\right\rfloor}\sum\limits_{y=1}^{\left\lfloor\frac bk\right\rfloor}\left[n|\gcd(x,y)\right]=\left\lfloor\dfrac {\left\lfloor\frac ak\right\rfloor}n\right\rfloor\left\lfloor\dfrac{\left\lfloor\frac bk\right\rfloor}n\right\rfloor$,于是$f(n)=\sum\limits_{\substack{n|d\\d\leq\min\left\{\left\lfloor\frac ak\right\rfloor,\left\lfloor\frac bk\right\rfloor\right\}}}\mu\left(\dfrac dn\right)\left\lfloor\dfrac a{kd}\right\rfloor\left\lfloor\dfrac b{kd}\right\rfloor$

答案是$f(1)=\sum\limits_{d=1}^{\min\left\{\left\lfloor\frac ak\right\rfloor,\left\lfloor\frac bk\right\rfloor\right\}}\mu(d)\left\lfloor\dfrac a{kd}\right\rfloor\left\lfloor\dfrac b{kd}\right\rfloor$

学习了一种新的更简洁的写法,这种写法用一种特殊的技巧来快速枚举$d$使得每迭代一次$\left\lfloor\dfrac nd\right\rfloor$就改变一次

for(i=1;i<=n;i=nex+1){
	nex=n/(n/i);
	//计算[i,nex]的答案
}

循环内的第一行是最重要的,原理大概是这样

假设当$i\in[l,r]$时$\left\lfloor\dfrac ni\right\rfloor=k$且$\left\lfloor\dfrac n{r+1}\right\rfloor\lt k$,那么因为$\left\lfloor\dfrac nr\right\rfloor=k$所以$\left\lfloor\dfrac{\frac nk}r\right\rfloor=1$,所以$\dfrac nk\geq r$

如果$\dfrac nk\geq r+1$,那么$\dfrac n{r+1}\geq k$,这与$\left\lfloor\dfrac n{r+1}\right\rfloor\lt k$矛盾

所以$r\leq\dfrac nk\lt r+1$,即$\left\lfloor\dfrac nk\right\rfloor=r$

这样就解释清楚了为什么要这样写,整个题就做完了

#include<stdio.h>
#define ll long long
#define T 50000
int pr[50010],mu[50010];
bool np[50010];
void sieve(){
	int i,j,m;
	m=0;
	np[1]=1;
	mu[1]=1;
	for(i=2;i<=T;i++){
		if(!np[i]){
			m++;
			pr[m]=i;
			mu[i]=-1;
		}
		for(j=1;j<=m;j++){
			if(pr[j]*(ll)i>T)break;
			np[i*pr[j]]=1;
			if(i%pr[j]==0){
				mu[i*pr[j]]=0;
				break;
			}else
				mu[i*pr[j]]=-mu[i];
		}
	}
	for(i=2;i<=T;i++)mu[i]+=mu[i-1];
}
int a,b;
int min(int a,int b){return a<b?a:b;}
void swap(int&a,int&b){a^=b^=a^=b;}
int F(int n){return(a/n)*(b/n);}
int mob(){
	int i,s=0,nex;
	if(a>b)swap(a,b);
	for(i=1;i<=a;i=nex+1){
		nex=min(a/(a/i),b/(b/i));
		s+=F(i)*(mu[nex]-mu[i-1]);
	}
	return s;
}
int main(){
	sieve();
	int t,d;
	scanf("%d",&t);
	while(t--){
		scanf("%d%d%d",&a,&b,&d);
		a/=d;
		b/=d;
		printf("%d\n",mob());
	}
}

感觉写太多字了,有点肝不动...

[luogu3455]ZAP-Queries的更多相关文章

  1. 【Luogu3455】【POI2007】ZAP-Queries(莫比乌斯反演)

    [Luogu3455][POI2007]ZAP-Queries(莫比乌斯反演) 题面 题目描述 FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x ...

  2. 实践 HTML5 的 CSS3 Media Queries

    先来介绍下 media,确切的说应该是 CSS media queries(CSS 媒体查询),媒体查询包含了一个媒体类型和至少一个使用如宽度.高度和颜色等媒体属性来限制样式表范围的表达式.CSS3 ...

  3. SQL Server 阻止了对组件 'Ad Hoc Distributed Queries' 的 STATEMENT'OpenRowset/OpenDatasource' 的访问

    delphi ado 跨数据库访问 语句如下 ' and db = '帐套1' 报错内容是:SQL Server 阻止了对组件 'Ad Hoc Distributed Queries' 的 STATE ...

  4. CSS3 Media Queries 实现响应式设计

    在 CSS2 中,你可以为不同的媒介设备(如屏幕.打印机)指定专用的样式表,而现在借助 CSS3 的 Media Queries 特性,可以更为有效的实现这个功能.你可以为媒介类型添加某些条件,检测设 ...

  5. 使用CSS3 Media Queries实现网页自适应

    原文来源:http://webdesignerwall.com 翻译:http://xinyo.org 当今银屏分辨率从 320px (iPhone)到 2560px (大屏显示器)或者更大.人们也不 ...

  6. SQL Queries from Transactional Plugin Pipeline

    Sometimes the LINQ, Query Expressions or Fetch just doesn't give you the ability to quickly query yo ...

  7. Media Queries 详解

    Media Queries直译过来就是“媒体查询”,在我们平时的Web页面中head部分常看到这样的一段代码:  <link href="css/reset.css" rel ...

  8. SPOJ GSS3 Can you answer these queries III[线段树]

    SPOJ - GSS3 Can you answer these queries III Description You are given a sequence A of N (N <= 50 ...

  9. SPOJ GSS1 Can you answer these queries I[线段树]

    Description You are given a sequence A[1], A[2], ..., A[N] . ( |A[i]| ≤ 15007 , 1 ≤ N ≤ 50000 ). A q ...

  10. 【Codeforces710F】String Set Queries (强制在线)AC自动机 + 二进制分组

    F. String Set Queries time limit per test:3 seconds memory limit per test:768 megabytes input:standa ...

随机推荐

  1. Clevo P950笔记本加装4G模块

    要补全的电路部分如下(原理图见附件) 这里经过尝试,发现左上角R217,R218不用接,3G_POWER部分不接(包括MTS3572G6.UK3018及电阻电容,3G_PWR_EN实测是3.3V,驱动 ...

  2. 兔子与兔子 [Hash]

    兔子与兔子 描述 很久很久以前,森林里住着一群兔子.有一天,兔子们想要研究自己的 DNA 序列.我们首先选取一个好长好长的 DNA 序列(小兔子是外星生物,DNA 序列可能包含 26 个小写英文字母) ...

  3. Educational Codeforces Round 55:B. Vova and Trophies

    B. Vova and Trophies 题目链接:https://codeforc.es/contest/1082/problem/B 题意: 给出一个“GS”串,有一次交换两个字母的机会,问最大的 ...

  4. linux 监控网卡实时流量iftop

    一.安装iftop Centos也可以直接yum install iftop -y http://www.tcpdump.org/release/ 到如下获取libpcap.tcpdump iftop ...

  5. 使用e.target.dataset的问题

    在微信开发中我们经常会用到标签中属性的属性值,有时候我们通过 data-* 和 e.target.dateset 来获取属性值会出现一点小bug,即是调用出来的数据是undefined. 1)方案1– ...

  6. Spring 学习笔记(三)之注解

    一.在classpath下扫描组件 •组件扫描(component scanning):  Spring 能够从 classpath 下自动扫描, 侦测和实例化具有特定注解的组件. •特定组件包括: ...

  7. Python基础(1)_初识Python

    一.为什么要编程 解放人力:让机器按照人们事先为其编写好的程序自发地去工作 二.什么是编程语言 编程语言就是程序员与计算机之间沟通的介质:程序员把自己想说的话用编程语言写到文件里,这其实就开发了一个程 ...

  8. 「6月雅礼集训 2017 Day1」说无可说

    [题目大意] 给出n个字符串,求有多少组字符串之间编辑距离为1~8. n<=200,∑|S| <= 10^6 [题解] 首先找编辑距离有一个n^2的dp,由于发现只找小于等于8的,所以搜旁 ...

  9. codechef September Challenge 2017 Sereja and Commands

    ———————————————————————————— 这道题维护一下原序列的差分以及操作的差分就可以了 记得倒着差分操作 因为题目保证操作2的l r 小与当前位置 #include<cstd ...

  10. 160多条Windows 7 “运行”命令

    160多条Windows 7 “运行”命令: 删除或更改应用程序 = control appwiz.cpl 添加设备 = devicepairingwizard  蓝牙文件传输 = fsquirt  ...