In mathematics, the Schwartz kernel theorem is a foundational result in the theory of generalized functions, published by Laurent Schwartz in 1952. It states, in broad terms, that the generalized functions introduced by Schwartz (Schwartz distributions) have a two-variable theory that includes all reasonable bilinear forms on the space   of test functions. The space  itself consists of smooth functions of compact support.

在数学中,施瓦茨核定理是广义函数理论的一个基本结果,由Laurent Schwartz在1952年发表。广义地说,它表明,由Schwartz引入的广义函数具有双变量理论,包含在测试函数的空间D上的所有合理的双线性形式。空间D自身由紧凑支持型的光滑函数组成。

Statement of the theorem定理的描述

Let  and  be open sets in  . Every distribution  defines a continuous linear map  such that

让X和Y为Rn上的开放集合。每一个分布定义了一个连续的线性映射 从而使得

for every . Conversely, for every such continuous linear map  there exists one and only one distribution  such that (1) holds. The distribution  is the kernel of the map .

对于每一个。相反地,对于每一个这样的连续线性映射K,存在有且仅有一个分布使得(1)成立。分布k就是映射K的核。

Note

Given a distribution  one can always write the linear map K informally as

so that

.

Integral kernels

The traditional kernel functions K(xy) of two variables of the theory of integral operators having been expanded in scope to include their generalized function analogues, which are allowed to be more singular in a serious way, a large class of operators from D to its dual space D′ of distributions can be constructed. The point of the theorem is to assert that the extended class of operators can be characterised abstractly, as containing all operators subject to a minimum continuity condition. A bilinear form on D arises by pairing the image distribution with a test function.

A simple example is that the identity operator I corresponds to δ(x − y), in terms of the Dirac delta function δ. While this is at most an observation, it shows how the distribution theory adds to the scope. Integral operators are not so 'singular'; another way to put it is that for K a continuous kernel, only compact operators are created on a space such as the continuous functions on [0,1]. The operator I is far from compact, and its kernel is intuitively speaking approximated by functions on [0,1] × [0,1] with a spike along the diagonal x = y and vanishing elsewhere.

This result implies that the formation of distributions has a major property of 'closure' within the traditional domain of functional analysis. It was interpreted (comment of Jean Dieudonné) as a strong verification of the suitability of the Schwartz theory of distributions to mathematical analysis more widely seen. In his Éléments d'analyse volume 7, p. 3 he notes that the theorem includes differential operators on the same footing as integral operators, and concludes that it is perhaps the most important modern result of functional analysis. He goes on immediately to qualify that statement, saying that the setting is too 'vast' for differential operators, because of the property of monotonicity with respect to the support of a function, which is evident for differentiation. Even monotonicity with respect to singular support is not characteristic of the general case; its consideration leads in the direction of the contemporary theory of pseudo-differential operators.

Smooth manifolds

Dieudonné proves a version of the Schwartz result valid for smooth manifolds, and additional supporting results, in sections 23.9 to 23.12 of that book.

References

External links

CategoriesGeneralized functions Transforms Theorems in functional analysis

>> 施瓦兹引理:https://baike.baidu.com/item/施瓦兹引理/18984053

>>Schwartz space:https://en.wikipedia.org/wiki/Schwartz_space

>>Kernel:https://en.wikipedia.org/wiki/Kernel

>>FOURIER STANDARD SPACES and the Kernel Theorem:https://www.univie.ac.at/nuhag-php/dateien/talks/3338_Garching1317.pdf

>>施瓦兹广义函数理论的成因探析:http://www.doc88.com/p-3498616571581.html

>>施瓦兹空间的成因解析:http://www.doc88.com/p-5778688208231.html

>>Cours d'analyse. Théorie des distributions et analyse de Fourier(英文).PDF :https://max.book118.com/html/2017/0502/103891395.shtm

Schwartz kernel theorem施瓦兹核定理的更多相关文章

  1. 旋度定理(Curl Theorem)和散度定理(Divergence theorem)

    原文链接 首先说说格林公式(Green's theorem).对于一段封闭曲线,若其围城的区域D为单连通区域(内部任意曲线围城的区域都属于院区域),则有如下公式: 其中其中L为D的边界,取正方向.如果 ...

  2. weighted Kernel k-means 加权核k均值算法理解及其实现(一)

    那就从k-means开始吧 对于机器学习的新手小白来说,k-means算法应该都会接触到吧.传统的k-means算法是一个硬聚类(因为要指定k这个参数啦)算法.这里利用百度的解释 它是数据点到原型的某 ...

  3. Matrix_tree Theorem 矩阵树定理学习笔记

    Matrix_tree Theorem: 给定一个无向图, 定义矩阵A A[i][j] = - (<i, j>之间的边数) A[i][i] = 点i的度数 其生成树的个数等于 A的任意n ...

  4. [spoj104][Highways] (生成树计数+矩阵树定理+高斯消元)

    In some countries building highways takes a lot of time... Maybe that's because there are many possi ...

  5. Latex中定义、定理、引理、证明 设置方法总结

    Latex中定义.定理.引理.证明 设置方法总结 在LaTex中需要有关定理.公理.命题.引理.定义等时,常用如下命令 \newtheorem{定理环境名}{标题}[主计数器名] \newtheore ...

  6. opencv-8-图像核与蒙板操作

    opencv-8-图像核与蒙板操作 opencvc++qt 开始之前 在准备开始的时候, 我大概列了一个opencv 章节列表, 按照章节进行写, 写到某些部分的时候再具体调整章节内容, 完成了之后, ...

  7. Kernel PCA for Novelty Detection

    目录 引 主要内容 的选择 数值实验 矩形框 spiral 代码 Hoffmann H. Kernel PCA for novelty detection[J]. Pattern Recognitio ...

  8. 【Math for ML】线性代数-单射,满射,双射,同构,同态,仿射

    I. 映射(Mapping) 1. 单射(Injective) 函数f 是单射当且仅当若f(x) = f(y) 则 x = y. 例子: f(x) = x+5 从实数集\(R\)到\(R\)是个单射函 ...

  9. Reading | 《DEEP LEARNING》

    目录 一.引言 1.什么是.为什么需要深度学习 2.简单的机器学习算法对数据表示的依赖 3.深度学习的历史趋势 最早的人工神经网络:旨在模拟生物学习的计算模型 神经网络第二次浪潮:联结主义connec ...

随机推荐

  1. 《大教堂和集市》笔记——为什么一个本科生业余作品却成了全世界最流行的操作系统之一Linux?

    1. Eric Raymond有一篇著名文章<大教堂和集市>(The Cathedral and the Bazaar). 他说,世界上的建筑可以分两种:一种是集市,天天开放在那里,从无到 ...

  2. jquery中ajax异步调用接口

    之前写过一个原始的.无封装的页面,没有引入任何外部js,直接实例化Ajax的XmlRequest对象去异步调用接口,参见Ajax异步调用http接口后刷新页面,可对比一下. 现在我们用jquery包装 ...

  3. AngularJS:Service

    ylbtech-AngularJS:Service 1.返回顶部 1. AngularJS 服务(Service) AngularJS 中你可以创建自己的服务,或使用内建服务. 什么是服务? 在 An ...

  4. 接口规范,js处理json,php返回给ajax的数据格式

    ajax异步获取php数据. 一般php会在后台处理请求,并返回结果给前端. 必须是echo的方式,不然ajax获取不到. 返回的类型包括,字符串,数字,json. 最常用的就是json. 返回后,前 ...

  5. zabbix 在linux上安装以及一些配置

    本文章将演示zabbix 3.2版本的安装,供有需要的伙伴们参考: 网络也有很多关于zabbix的安装文档,甚至每一步的配置都有详细的截图,我这里就不演示截图了,多配置几次自然就熟练了.多折腾. 楼主 ...

  6. 基本的Ceph性能测试工具和方法

    测试环境 1. 测试准备 1.1 磁盘读写性能 1.1.1 单个 OSD 磁盘写性能,大概 165MB/s. root@ceph1:~# echo 3 > /proc/sys/vm/drop_c ...

  7. Python字符串笔录

    python字符串操作实方法,包括了几乎所有常用的python字符串操作,如字符串的替换.删除.截取.复制.连接.比较.查找.分割等 1.去空格及特殊符号 >>> s = '123 ...

  8. 第十七章 MySQL Replication(待续)

    ··········

  9. 「小程序JAVA实战」 小程序远程调试(九)

    转自:https://idig8.com/2018/08/09/xiaochengxu-chuji-09/ 在开发javaweb应用的时候,如果遇见一个问题都会调试,debug,在火狐和谷歌浏览器的时 ...

  10. Mycat实战之主键数据库自增方式

    创建一个 person表,主键为Id,hash方式分片,主键自增(采用数据库方式) #person表结构如下 Id,主键,Mycat自增主键 name,字符串,16字节最长 school,毕业学校,数 ...