Schwartz kernel theorem施瓦兹核定理
In mathematics, the Schwartz kernel theorem is a foundational result in the theory of generalized functions, published by Laurent Schwartz in 1952. It states, in broad terms, that the generalized functions introduced by Schwartz (Schwartz distributions) have a two-variable theory that includes all reasonable bilinear forms on the space of test functions. The space
itself consists of smooth functions of compact support.
在数学中,施瓦茨核定理是广义函数理论的一个基本结果,由Laurent Schwartz在1952年发表。广义地说,它表明,由Schwartz引入的广义函数具有双变量理论,包含在测试函数的空间D上的所有合理的双线性形式。空间D自身由紧凑支持型的光滑函数组成。
Statement of the theorem定理的描述
Let and
be open sets in
. Every distribution
defines a continuous linear map
such that
让X和Y为Rn上的开放集合。每一个分布定义了一个连续的线性映射
从而使得
for every . Conversely, for every such continuous linear map
there exists one and only one distribution
such that (1) holds. The distribution
is the kernel of the map
.
对于每一个。相反地,对于每一个这样的连续线性映射K,存在有且仅有一个分布
使得(1)成立。分布k就是映射K的核。
Note
Given a distribution one can always write the linear map K informally as
so that
.
Integral kernels
The traditional kernel functions K(x, y) of two variables of the theory of integral operators having been expanded in scope to include their generalized function analogues, which are allowed to be more singular in a serious way, a large class of operators from D to its dual space D′ of distributions can be constructed. The point of the theorem is to assert that the extended class of operators can be characterised abstractly, as containing all operators subject to a minimum continuity condition. A bilinear form on D arises by pairing the image distribution with a test function.
A simple example is that the identity operator I corresponds to δ(x − y), in terms of the Dirac delta function δ. While this is at most an observation, it shows how the distribution theory adds to the scope. Integral operators are not so 'singular'; another way to put it is that for K a continuous kernel, only compact operators are created on a space such as the continuous functions on [0,1]. The operator I is far from compact, and its kernel is intuitively speaking approximated by functions on [0,1] × [0,1] with a spike along the diagonal x = y and vanishing elsewhere.
This result implies that the formation of distributions has a major property of 'closure' within the traditional domain of functional analysis. It was interpreted (comment of Jean Dieudonné) as a strong verification of the suitability of the Schwartz theory of distributions to mathematical analysis more widely seen. In his Éléments d'analyse volume 7, p. 3 he notes that the theorem includes differential operators on the same footing as integral operators, and concludes that it is perhaps the most important modern result of functional analysis. He goes on immediately to qualify that statement, saying that the setting is too 'vast' for differential operators, because of the property of monotonicity with respect to the support of a function, which is evident for differentiation. Even monotonicity with respect to singular support is not characteristic of the general case; its consideration leads in the direction of the contemporary theory of pseudo-differential operators.
Smooth manifolds
Dieudonné proves a version of the Schwartz result valid for smooth manifolds, and additional supporting results, in sections 23.9 to 23.12 of that book.
References
- Hörmander, L. (1983), The analysis of linear partial differential operators I, Grundl. Math. Wissenschaft., 256, Springer, doi:10.1007/978-3-642-96750-4, ISBN 3-540-12104-8, MR 0717035.
External links
- G. L. Litvinov (2001) [1994], "Nuclear bilinear form", in Hazewinkel, Michiel, Encyclopedia of Mathematics, Springer Science+Business Media B.V. / Kluwer Academic Publishers, ISBN 978-1-55608-010-4
Categories: Generalized functions Transforms Theorems in functional analysis
>> 施瓦兹引理:https://baike.baidu.com/item/施瓦兹引理/18984053
>>Schwartz space:https://en.wikipedia.org/wiki/Schwartz_space
>>Kernel:https://en.wikipedia.org/wiki/Kernel
>>FOURIER STANDARD SPACES and the Kernel Theorem:https://www.univie.ac.at/nuhag-php/dateien/talks/3338_Garching1317.pdf
>>施瓦兹广义函数理论的成因探析:http://www.doc88.com/p-3498616571581.html
>>施瓦兹空间的成因解析:http://www.doc88.com/p-5778688208231.html
>>Cours d'analyse. Théorie des distributions et analyse de Fourier(英文).PDF :https://max.book118.com/html/2017/0502/103891395.shtm
Schwartz kernel theorem施瓦兹核定理的更多相关文章
- 旋度定理(Curl Theorem)和散度定理(Divergence theorem)
原文链接 首先说说格林公式(Green's theorem).对于一段封闭曲线,若其围城的区域D为单连通区域(内部任意曲线围城的区域都属于院区域),则有如下公式: 其中其中L为D的边界,取正方向.如果 ...
- weighted Kernel k-means 加权核k均值算法理解及其实现(一)
那就从k-means开始吧 对于机器学习的新手小白来说,k-means算法应该都会接触到吧.传统的k-means算法是一个硬聚类(因为要指定k这个参数啦)算法.这里利用百度的解释 它是数据点到原型的某 ...
- Matrix_tree Theorem 矩阵树定理学习笔记
Matrix_tree Theorem: 给定一个无向图, 定义矩阵A A[i][j] = - (<i, j>之间的边数) A[i][i] = 点i的度数 其生成树的个数等于 A的任意n ...
- [spoj104][Highways] (生成树计数+矩阵树定理+高斯消元)
In some countries building highways takes a lot of time... Maybe that's because there are many possi ...
- Latex中定义、定理、引理、证明 设置方法总结
Latex中定义.定理.引理.证明 设置方法总结 在LaTex中需要有关定理.公理.命题.引理.定义等时,常用如下命令 \newtheorem{定理环境名}{标题}[主计数器名] \newtheore ...
- opencv-8-图像核与蒙板操作
opencv-8-图像核与蒙板操作 opencvc++qt 开始之前 在准备开始的时候, 我大概列了一个opencv 章节列表, 按照章节进行写, 写到某些部分的时候再具体调整章节内容, 完成了之后, ...
- Kernel PCA for Novelty Detection
目录 引 主要内容 的选择 数值实验 矩形框 spiral 代码 Hoffmann H. Kernel PCA for novelty detection[J]. Pattern Recognitio ...
- 【Math for ML】线性代数-单射,满射,双射,同构,同态,仿射
I. 映射(Mapping) 1. 单射(Injective) 函数f 是单射当且仅当若f(x) = f(y) 则 x = y. 例子: f(x) = x+5 从实数集\(R\)到\(R\)是个单射函 ...
- Reading | 《DEEP LEARNING》
目录 一.引言 1.什么是.为什么需要深度学习 2.简单的机器学习算法对数据表示的依赖 3.深度学习的历史趋势 最早的人工神经网络:旨在模拟生物学习的计算模型 神经网络第二次浪潮:联结主义connec ...
随机推荐
- Terracotta设计原理分析--(部分内容来自官方描述)
因为工作中历史产品采用了terracotta作为分布式缓存线性扩展平台,因此不得不提前对其原理做了相关了解,当然其中很多的设计思想和oracle.memcached的设计相似,但也有自己的亮点,那就是 ...
- Git的其他一些使用案例
按照格式输出提交号 作者 时间 git log --pretty=format:"%h %an %cd" --date=iso 获取所有远程的tag和他的commit sha1 g ...
- (转)oracle嵌套表示例
本文转载自:http://www.cnblogs.com/gisdream/archive/2012/04/13/2445291.html ----嵌套表:就是把一个表中的字段定义为一个表,这个字段表 ...
- 【转】Jmeter应用评估
Jmeter应用评估 发布时间: 2008-9-03 16:17 作者: 未知 来源: 网络转载 字体: 小 中 大 | 上一篇 下一篇 | 打印 | 我要投稿 | 推荐标签: ...
- 2017中国大学生程序设计竞赛 - 女生专场(Graph Theory)
Graph Theory Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)To ...
- AD芯片的基准参考电压问题
基准参考电压的精度一般非常高的! AD芯片 : AD9226的基准参考电压 误差一般是 千分之一! 我之前用万用表测量AD9226的参考电压大概是1.89V(这款AD的正确参考电压应该是2V),所 ...
- 关系数据库SQL复习
1.1 SQL的概述 SQL(Structured Query Language)结构化查询语言,是关系数据库的标准语言 SQL是一个通用的.功能极强的关系数据库语言 1.2 SQL的特点 1. 综合 ...
- 一个电脑同时运行 64bit 和 32bit 的eclipse 如何匹配 jdk环境
一个电脑同时运行 64bit 和 32bit 的 eclipse 如何匹配 jdk环境 1 eclipse 分 64bit 和 32bit 两种. 64bit的eclipse 只能搭配 64b ...
- Dev DateEdit控件格式设置
设置日期显示格式: 设置三个属性(显示时.编辑时) dtPubDate.Properties.DisplayFormat.FormatString = "yyyy-MM-dd"; ...
- PHP判断当前协议是否为HTTPS
function is_https() { if ( !empty($_SERVER['HTTPS']) && strtolower($_SERVER['HTTPS']) !== 'o ...