Schwartz kernel theorem施瓦兹核定理
In mathematics, the Schwartz kernel theorem is a foundational result in the theory of generalized functions, published by Laurent Schwartz in 1952. It states, in broad terms, that the generalized functions introduced by Schwartz (Schwartz distributions) have a two-variable theory that includes all reasonable bilinear forms on the space of test functions. The space
itself consists of smooth functions of compact support.
在数学中,施瓦茨核定理是广义函数理论的一个基本结果,由Laurent Schwartz在1952年发表。广义地说,它表明,由Schwartz引入的广义函数具有双变量理论,包含在测试函数的空间D上的所有合理的双线性形式。空间D自身由紧凑支持型的光滑函数组成。
Statement of the theorem定理的描述
Let and
be open sets in
. Every distribution
defines a continuous linear map
such that
让X和Y为Rn上的开放集合。每一个分布定义了一个连续的线性映射
从而使得
for every . Conversely, for every such continuous linear map
there exists one and only one distribution
such that (1) holds. The distribution
is the kernel of the map
.
对于每一个。相反地,对于每一个这样的连续线性映射K,存在有且仅有一个分布
使得(1)成立。分布k就是映射K的核。
Note
Given a distribution one can always write the linear map K informally as
so that
.
Integral kernels
The traditional kernel functions K(x, y) of two variables of the theory of integral operators having been expanded in scope to include their generalized function analogues, which are allowed to be more singular in a serious way, a large class of operators from D to its dual space D′ of distributions can be constructed. The point of the theorem is to assert that the extended class of operators can be characterised abstractly, as containing all operators subject to a minimum continuity condition. A bilinear form on D arises by pairing the image distribution with a test function.
A simple example is that the identity operator I corresponds to δ(x − y), in terms of the Dirac delta function δ. While this is at most an observation, it shows how the distribution theory adds to the scope. Integral operators are not so 'singular'; another way to put it is that for K a continuous kernel, only compact operators are created on a space such as the continuous functions on [0,1]. The operator I is far from compact, and its kernel is intuitively speaking approximated by functions on [0,1] × [0,1] with a spike along the diagonal x = y and vanishing elsewhere.
This result implies that the formation of distributions has a major property of 'closure' within the traditional domain of functional analysis. It was interpreted (comment of Jean Dieudonné) as a strong verification of the suitability of the Schwartz theory of distributions to mathematical analysis more widely seen. In his Éléments d'analyse volume 7, p. 3 he notes that the theorem includes differential operators on the same footing as integral operators, and concludes that it is perhaps the most important modern result of functional analysis. He goes on immediately to qualify that statement, saying that the setting is too 'vast' for differential operators, because of the property of monotonicity with respect to the support of a function, which is evident for differentiation. Even monotonicity with respect to singular support is not characteristic of the general case; its consideration leads in the direction of the contemporary theory of pseudo-differential operators.
Smooth manifolds
Dieudonné proves a version of the Schwartz result valid for smooth manifolds, and additional supporting results, in sections 23.9 to 23.12 of that book.
References
- Hörmander, L. (1983), The analysis of linear partial differential operators I, Grundl. Math. Wissenschaft., 256, Springer, doi:10.1007/978-3-642-96750-4, ISBN 3-540-12104-8, MR 0717035.
External links
- G. L. Litvinov (2001) [1994], "Nuclear bilinear form", in Hazewinkel, Michiel, Encyclopedia of Mathematics, Springer Science+Business Media B.V. / Kluwer Academic Publishers, ISBN 978-1-55608-010-4
Categories: Generalized functions Transforms Theorems in functional analysis
>> 施瓦兹引理:https://baike.baidu.com/item/施瓦兹引理/18984053
>>Schwartz space:https://en.wikipedia.org/wiki/Schwartz_space
>>Kernel:https://en.wikipedia.org/wiki/Kernel
>>FOURIER STANDARD SPACES and the Kernel Theorem:https://www.univie.ac.at/nuhag-php/dateien/talks/3338_Garching1317.pdf
>>施瓦兹广义函数理论的成因探析:http://www.doc88.com/p-3498616571581.html
>>施瓦兹空间的成因解析:http://www.doc88.com/p-5778688208231.html
>>Cours d'analyse. Théorie des distributions et analyse de Fourier(英文).PDF :https://max.book118.com/html/2017/0502/103891395.shtm
Schwartz kernel theorem施瓦兹核定理的更多相关文章
- 旋度定理(Curl Theorem)和散度定理(Divergence theorem)
原文链接 首先说说格林公式(Green's theorem).对于一段封闭曲线,若其围城的区域D为单连通区域(内部任意曲线围城的区域都属于院区域),则有如下公式: 其中其中L为D的边界,取正方向.如果 ...
- weighted Kernel k-means 加权核k均值算法理解及其实现(一)
那就从k-means开始吧 对于机器学习的新手小白来说,k-means算法应该都会接触到吧.传统的k-means算法是一个硬聚类(因为要指定k这个参数啦)算法.这里利用百度的解释 它是数据点到原型的某 ...
- Matrix_tree Theorem 矩阵树定理学习笔记
Matrix_tree Theorem: 给定一个无向图, 定义矩阵A A[i][j] = - (<i, j>之间的边数) A[i][i] = 点i的度数 其生成树的个数等于 A的任意n ...
- [spoj104][Highways] (生成树计数+矩阵树定理+高斯消元)
In some countries building highways takes a lot of time... Maybe that's because there are many possi ...
- Latex中定义、定理、引理、证明 设置方法总结
Latex中定义.定理.引理.证明 设置方法总结 在LaTex中需要有关定理.公理.命题.引理.定义等时,常用如下命令 \newtheorem{定理环境名}{标题}[主计数器名] \newtheore ...
- opencv-8-图像核与蒙板操作
opencv-8-图像核与蒙板操作 opencvc++qt 开始之前 在准备开始的时候, 我大概列了一个opencv 章节列表, 按照章节进行写, 写到某些部分的时候再具体调整章节内容, 完成了之后, ...
- Kernel PCA for Novelty Detection
目录 引 主要内容 的选择 数值实验 矩形框 spiral 代码 Hoffmann H. Kernel PCA for novelty detection[J]. Pattern Recognitio ...
- 【Math for ML】线性代数-单射,满射,双射,同构,同态,仿射
I. 映射(Mapping) 1. 单射(Injective) 函数f 是单射当且仅当若f(x) = f(y) 则 x = y. 例子: f(x) = x+5 从实数集\(R\)到\(R\)是个单射函 ...
- Reading | 《DEEP LEARNING》
目录 一.引言 1.什么是.为什么需要深度学习 2.简单的机器学习算法对数据表示的依赖 3.深度学习的历史趋势 最早的人工神经网络:旨在模拟生物学习的计算模型 神经网络第二次浪潮:联结主义connec ...
随机推荐
- css学习笔记之图像
图像与文本的对齐方式: vertical-align:text-top;表示的意思是图像的顶部和同一行的文本对齐,但文本不会超出图片的上边线. vertical-align:middle;表示的意思是 ...
- Crypto 加密解密
import binascii from Crypto.Cipher import AES #秘钥,此处需要将字符串转为字节 from utils import config from utils.e ...
- Netty实现原理浅析
1.总体结构 先放上一张漂亮的Netty总体结构图,下面的内容也主要围绕该图上的一些核心功能做分析,但对如Container Integration及Security Support等高级可选功能,本 ...
- 1146 Topological Order
题意:判断序列是否为拓扑序列. 思路:理解什么是拓扑排序就好了,简单题.需要注意的地方就是,因为这里要判断多个,每次判断都会改变入度indegree[],因此记得要把indegree[]留个备份.ps ...
- mysql 启动卡主,cpu 100%
[mysql@mysqlhq scripts]$ cat /etc/redhat-release Kylin Linux release 3.3.1707 (Core) mysql version S ...
- pymysql简单链接示例
#!/usr/bin/env python # encoding: utf-8 # Date: 2018/6/24 import pymysql username = input('username ...
- apache 不解析 php
apache 不解析php 1.找到: AddType application/x-gzip .gz .tgz在其下面添加: AddType application/x-httpd-php .php ...
- angularjs 简易模态框
angularjs 简易模态框 angularjs 中的模态框一般使用插件angular-ui-bootstrap书写. 这里记录一种简易的模态框写法: 1.警告消息框alert: 原理: 在html ...
- $().each和$.each()
$().each 在dom处理上面用的较多.如果页面有多个input标签类型为checkbox,对于这时用$().each来处理多个checkbook,例如: $(“input[name=’ch’]” ...
- MySQL的blob类型
MySQL中的Blob类型 MySQL中存放大对象的时候,使用的是Blob类型.所谓的大对象指的就是图片,比如jpg.png.gif等格式的图片,文档,比如pdf.doc等,以及其他的文件.为了在数据 ...