luogu

题意

给你一个无向图\(G(V,E)\)。 每个顶点都有一个int范围内的整数的标记。 不同的顶点可能有相同的标记。

对于边\((u,v)\),我们定义\(Cost(u,v)=\rm mark_u\ xor \ mark_v\)。

现在我们知道某些节点的标记了。你需要确定其他节点的标记,以使边的总成本尽可能小。

sol

既然是异或的话那就按位考虑吧。

每个已经确定的点和\(S\)或者是\(T\)连\(inf\)边。两个相邻的点之间连双向为\(1\)的边。

直接就是最小割了吧。

跑完最小割后\(dep\)值非零的点就是与\(S\)相连的点,由此可以构造出方案。

code

#include<cstdio>
#include<algorithm>
#include<cstring>
#include<queue>
using namespace std;
int gi()
{
int x=0,w=1;char ch=getchar();
while ((ch<'0'||ch>'9')&&ch!='-') ch=getchar();
if (ch=='-') w=0,ch=getchar();
while (ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return w?x:-x;
}
const int N = 505;
const int inf = 1e9;
struct edge{int to,nxt,w;}a[N<<5];
int Case,n,m,uu[N*6],vv[N*6],k,val[N],S,T,head[N],cnt=1,dep[N],cur[N],ans[N];
queue<int>Q;
void link(int u,int v,int w)
{
a[++cnt]=(edge){v,head[u],w};
head[u]=cnt;
a[++cnt]=(edge){u,head[v],w};
head[v]=cnt;
}
bool bfs()
{
memset(dep,0,sizeof(dep));
dep[S]=1;Q.push(S);
while (!Q.empty())
{
int u=Q.front();Q.pop();
for (int e=head[u];e;e=a[e].nxt)
if (a[e].w&&!dep[a[e].to])
dep[a[e].to]=dep[u]+1,Q.push(a[e].to);
}
return dep[T];
}
int dfs(int u,int f)
{
if (u==T) return f;
for (int &e=cur[u];e;e=a[e].nxt)
if (a[e].w&&dep[a[e].to]==dep[u]+1)
{
int tmp=dfs(a[e].to,min(a[e].w,f));
if (tmp) {a[e].w-=tmp;a[e^1].w+=tmp;return tmp;}
}
return 0;
}
int Dinic()
{
int res=0;
while (bfs())
{
for (int i=1;i<=T;++i) cur[i]=head[i];
while (int tmp=dfs(S,inf)) res+=tmp;
}
return res;
}
int main()
{
Case=gi();
while (Case--)
{
n=gi();m=gi();S=n+1;T=n+2;
for (int i=1;i<=n;++i) val[i]=-1,ans[i]=0;
for (int i=1;i<=m;++i) uu[i]=gi(),vv[i]=gi();
k=gi();
while (k--) {int u=gi();val[u]=gi();}
for (int j=30;~j;--j)
{
for (int i=1;i<=T;++i) head[i]=0;cnt=1;
for (int i=1;i<=n;++i)
if (~val[i])
if (val[i]&(1<<j)) link(S,i,inf);else link(i,T,inf);
for (int i=1;i<=m;++i) link(uu[i],vv[i],1);
Dinic();
for (int i=1;i<=n;++i) if (dep[i]) ans[i]|=1<<j;
}
for (int i=1;i<=n;++i) printf("%d\n",ans[i]);
}
return 0;
}

[SP839]Optimal Marks的更多相关文章

  1. SP839 Optimal marks(最小割)

    SP839 Optimal marks(最小割) 给你一个无向图G(V,E). 每个顶点都有一个int范围内的整数的标记. 不同的顶点可能有相同的标记.对于边(u,v),我们定义Cost(u,v)= ...

  2. 图论(网络流):SPOJ OPTM - Optimal Marks

    OPTM - Optimal Marks You are given an undirected graph G(V, E). Each vertex has a mark which is an i ...

  3. SPOJ OPTM - Optimal Marks

    OPTM - Optimal Marks no tags  You are given an undirected graph G(V, E). Each vertex has a mark whic ...

  4. [SPOJ839]Optimal Marks

    [SPOJ839]Optimal Marks 试题描述 You are given an undirected graph \(G(V, E)\). Each vertex has a mark wh ...

  5. Optimal Marks(optimal)

    Optimal Marks(optimal) 题目描述 定义无向图边的值为这条边连接的两个点的点权异或值. 定义无向图的值为无向图中所有边的值的和. 给定nn个点mm条边构成的图.其中有些点的权值是给 ...

  6. 【bzoj2400】Spoj 839 Optimal Marks 按位最大流

    Spoj 839 Optimal Marks Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 908  Solved: 347[Submit][Stat ...

  7. 【BZOJ2400】Spoj 839 Optimal Marks 最小割

    [BZOJ2400]Spoj 839 Optimal Marks Description 定义无向图中的一条边的值为:这条边连接的两个点的值的异或值. 定义一个无向图的值为:这个无向图所有边的值的和. ...

  8. Luogu SP839 OPTM - Optimal Marks(按位最小割)

    这道题和 BZOJ 2400 是一道题,不多讲了 CODE #include <cstdio> #include <cstring> #include <vector&g ...

  9. 839. Optimal Marks - SPOJ

    You are given an undirected graph G(V, E). Each vertex has a mark which is an integer from the range ...

随机推荐

  1. Python框架之Tornado(概述)

    本系列博文计划: 1.剖析基于Python的Web框架Tornado的源码,为何要阅读源码? Tornado 由前 google 员工开发,代码非常精练,实现也很轻巧,加上清晰的注释和丰富的 demo ...

  2. HackerRank - maximum-perimeter-triangle 【水】

    题意 给出一系列数字,判断其中哪三个数字可以构成一个三角形,如果有多个,输出周长最大的那个,如果没有输出 - 1 思路 数据较小,所有情况FOR一遍 判断一下 AC代码 #include <cs ...

  3. classpath是什么

    作用: 告诉Java执行环境,在哪些目录下可以找到您所要执行的Java程序所需要的类或者包(也就是.class文件) JDK 5.0默认就会到JDK的lib目录下寻找Java程序. 如何配置? 有许多 ...

  4. SpringBoot 通用Validator

    第一步,pom.xml引入hibernate-validator <dependency> <groupId>org.hibernate</groupId> < ...

  5. 标准库string与C风格字符串

    返回字符串的长度 string标准库 #include<iostream> #include<cstring> using namespace std; int main() ...

  6. 2.mysql高级查询

    01.SQL高级查询_排序     1.排序语句:order by 排序字段名  asc(默认的-升序) / desc(降序);     2.例如:查询所有服装类商品,将查询结果以价格升序排序:   ...

  7. 解决Linux系统在设置alias命令重启后失效的问题

    在使用linux系统的过程中,大多数情况下都是在字符界面下进行的.有些比较长的命令我们不希望每次都重复输入,这样不仅浪费时间而且还容易出错:我们会使用alias命令来解决 比如: alias ll=' ...

  8. java入门了解03

    ASSCII表 . 1.final关键字    (1)含义:最终的意思,修饰方法,类,变量    (2)特点:          A:修饰类,不能被继承          B:修饰的方法,不能被重载  ...

  9. HYSBZ 1500 维修数列(伸展树模板)

    题意: 题解:典型伸展树的题,比较全面. 我理解的伸展树: 1 伸展操作:就是旋转,因为我们只需保证二叉树中序遍历的结果不变,所以我们可以旋转来保持树的平衡,且旋转有左旋与右旋.通过这种方式保证不会让 ...

  10. DL四(预处理:主成分分析与白化 Preprocessing PCA and Whitening )

    预处理:主成分分析与白化 Preprocessing:PCA and Whitening 一主成分分析 PCA 1.1 基本术语 主成分分析 Principal Components Analysis ...