Recently, Pari and Arya did some research about NP-Hard problems and they found the minimum vertex cover problem very interesting.

Suppose the graph G is given. Subset A of its vertices is called a vertex cover of this graph, if for each edge uv there is at least one endpoint of it in this set, i.e.  or  (or both).

Pari and Arya have won a great undirected graph as an award in a team contest. Now they have to split it in two parts, but both of them want their parts of the graph to be a vertex cover.

They have agreed to give you their graph and you need to find two disjoint subsets of its vertices A and B, such that both A and B are vertex cover or claim it's impossible. Each vertex should be given to no more than one of the friends (or you can even keep it for yourself).

Input

The first line of the input contains two integers n and m (2 ≤ n ≤ 100 000, 1 ≤ m ≤ 100 000) — the number of vertices and the number of edges in the prize graph, respectively.

Each of the next m lines contains a pair of integers ui and vi (1  ≤  ui,  vi  ≤  n), denoting an undirected edge between ui and vi. It's guaranteed the graph won't contain any self-loops or multiple edges.

Output

If it's impossible to split the graph between Pari and Arya as they expect, print "-1" (without quotes).

If there are two disjoint sets of vertices, such that both sets are vertex cover, print their descriptions. Each description must contain two lines. The first line contains a single integer k denoting the number of vertices in that vertex cover, and the second line contains k integers — the indices of vertices. Note that because of m ≥ 1, vertex cover cannot be empty.

Examples

Input
4 2
1 2
2 3
Output
1
2
2
1 3
Input
3 3
1 2
2 3
1 3
Output
-1

题意:N点M边,能不能分为两个没有公共点的点集,二者都覆盖所有的边。

思路:因为每条边只有两个端点,所以两端点必须分到不同的集合,所以就说二分图判定,先判定完,然后dfs染色即可。

这里用到了带权的并查集优化了一下。

#include<bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<=b;i++)
using namespace std;
const int maxn=;
int fa[maxn],vis[maxn],u[maxn],v[maxn],dis[maxn];
vector<int>G[maxn],a,b;
int find(int x){
if(x!=fa[x]){
int fx=find(fa[x]);
dis[x]^=dis[fa[x]];
//因为这里有压缩路径,所以是x到根距离与fax到根的距离差
fa[x]=fx;
}
return fa[x];
}
int Union(int x,int y){
int fx=find(x),fy=find(y);
if(fx==fy){
if(dis[x]==dis[y]) return false;
return true;
}
fa[fx]=fy; dis[fx]=dis[x]^dis[y]^;
return true;
}
void dfs(int x,int op){
vis[x]=;
if(op==) a.push_back(x); else b.push_back(x);
rep(i,,G[x].size()-) if(!vis[G[x][i]]) dfs(G[x][i],-op);
}
int main()
{
int N,M;
scanf("%d%d",&N,&M);
rep(i,,N) fa[i]=i;
rep(i,,M) {
scanf("%d%d",&u[i],&v[i]);
G[u[i]].push_back(v[i]);
G[v[i]].push_back(u[i]);
if(!Union(u[i],v[i])) return puts("-1"),;
}
rep(i,,N){ if(!vis[i]&&G[i].size()) dfs(i,);}
printf("%d\n",a.size());
rep(i,,a.size()-) printf("%d ",a[i]); puts("");
printf("%d\n",b.size());
rep(i,,b.size()-) printf("%d ",b[i]); puts("");
return ;
}

CodeForces - 688C:NP-Hard Problem (二分图&带权并查集)的更多相关文章

  1. CodeForces - 687D: Dividing Kingdom II (二分图&带权并查集)

    Long time ago, there was a great kingdom and it was being ruled by The Great Arya and Pari The Great ...

  2. Codeforces Educational Codeforces Round 5 C. The Labyrinth 带权并查集

    C. The Labyrinth 题目连接: http://www.codeforces.com/contest/616/problem/C Description You are given a r ...

  3. BZOJ4025 二分图 分治 并查集 二分图 带权并查集按秩合并

    原文链接http://www.cnblogs.com/zhouzhendong/p/8683831.html 题目传送门 - BZOJ4025 题意 有$n$个点,有$m$条边.有$T$个时间段.其中 ...

  4. Codeforces Round #181 (Div. 2) B. Coach 带权并查集

    B. Coach 题目连接: http://www.codeforces.com/contest/300/problem/A Description A programming coach has n ...

  5. hdu 1829 &amp;poj 2492 A Bug&#39;s Life(推断二分图、带权并查集)

    A Bug's Life Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) To ...

  6. D. The Door Problem 带权并查集

    http://codeforces.com/contest/776/problem/D 注意到每扇门都有两个东西和它连接着,那么,如果第i扇门的状态是1,也就是已经打开了,那么连接它的两个按钮的状态应 ...

  7. Codeforces 1499G - Graph Coloring(带权并查集+欧拉回路)

    Codeforces 题面传送门 & 洛谷题面传送门 一道非常神仙的题 %%%%%%%%%%%% 首先看到这样的设问,做题数量多一点的同学不难想到这个题.事实上对于此题而言,题面中那个&quo ...

  8. codeforces 687D Dividing Kingdom II 带权并查集(dsu)

    题意:给你m条边,每条边有一个权值,每次询问只保留编号l到r的边,让你把这个图分成两部分 一个方案的耗费是当前符合条件的边的最大权值(符合条件的边指两段点都在一个部分),问你如何分,可以让耗费最小 分 ...

  9. UVA - 10004 Bicoloring(判断二分图——交叉染色法 / 带权并查集)

    d.给定一个图,判断是不是二分图. s.可以交叉染色,就是二分图:否则,不是. 另外,此题中的图是强连通图,即任意两点可达,从而dfs方法从一个点出发就能遍历整个图了. 如果不能保证从一个点出发可以遍 ...

随机推荐

  1. 当退出python时,是否释放全部内存

    答案是no,循环引用其他对象或引用自全局命名空间的对象的模块,在python退出时并非完全释放 另外,也不会释放c库保留的内存部分

  2. JavaScript:学习笔记(3)——正则表达式的应用

    JavaScript:正则表达式的应用 应用正则表达式对象RegExp 创建正则表达式 JavaScript中使用RegExp对象来表述一个正则表达式.使用正则表达式之前首先要创建一个RegExp对象 ...

  3. spring 异步处理request

    转自:http://blog.csdn.net/u012410733/article/details/52124333Spring MVC 3.2开始引入Servlet 3中的基于异步的处理reque ...

  4. Kattis - prva 【字符串】

    题意 从上到下 或者 从左到右 组成的长度 >= 2 的字符串 如果遇到 # 就断掉 输出 字典序最小的那一个 思路 只要从上到下 和从左到右 分别遍历一遍,将 长度 >= 2 的字符串 ...

  5. DATE_FORMAT() 函数用于以不同的格式显示日期/时间数据。

    DATE_FORMAT(date,format) format参数的格式有 %a 缩写星期名 %b 缩写月名 %c 月,数值 %D 带有英文前缀的月中的天 %d 月的天,数值(00-31) %e 月的 ...

  6. sg函数的应用

    刚刚接触到sg函数突然感觉到原来可以这么好用,sg函数应该算是博弈论中比较经典的东西了.下面来说说sg函数: 从网上搜集资料终于能看懂了下面解释来自http://www.cnblogs.com/cj6 ...

  7. java深入探究12-框架之Structs

    注意每次修改配置文件后必须项目重启 Structs2=structs1+xwork Struct2框架预先实现了一些功能: 1.请求数据的封装:2.文件上传的功能3.对国际化功能的简化4.文件效验功能 ...

  8. sqoop学习2(数据导入与导出)

    最近学习了下这个导数据的工具,但是在export命令这里卡住了,暂时排不了错误.先记录学习的这一点吧 sqoop是什么 sqoop(sql-on-hadoop):是用来实现结构型数据(如关系型数据库) ...

  9. R语言学习笔记(1)

    第一章:R语言介绍 一 R的使用 1 R是一种区分大小写的解释型语言.R语句由函数和赋值构成.R使用<-作为赋值符号.例如: x<-rnorm(5) 创建了一个名为x的向量对象,它包含5个 ...

  10. Codeforces Round #386 (Div. 2) C D E G

    一场比较简单的题 比较脑洞 C 如果坐车比较快的话 先走不如等车 所以最后的ans是min(纯走路,纯坐车) 讨论一下坐车时间 D 因为k一定是>=1的 所以当a=b的时候 GBGBGB这样间隔 ...