POJ 1113--Wall(计算凸包)
Wall
Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 40363 Accepted: 13754
Description
Once upon a time there was a greedy King who ordered his chief Architect to build a wall around the King's castle. The King was so greedy, that he would not listen to his Architect's proposals to build a beautiful brick wall with a perfect shape and nice tall towers. Instead, he ordered to build the wall around the whole castle using the least amount of stone and labor, but demanded that the wall should not come closer to the castle than a certain distance. If the King finds that the Architect has used more resources to build the wall than it was absolutely necessary to satisfy those requirements, then the Architect will loose his head. Moreover, he demanded Architect to introduce at once a plan of the wall listing the exact amount of resources that are needed to build the wall.

Your task is to help poor Architect to save his head, by writing a program that will find the minimum possible length of the wall that he could build around the castle to satisfy King's requirements.
The task is somewhat simplified by the fact, that the King's castle has a polygonal shape and is situated on a flat ground. The Architect has already established a Cartesian coordinate system and has precisely measured the coordinates of all castle's vertices in feet.
Input
The first line of the input file contains two integer numbers N and L separated by a space. N (3 <= N <= 1000) is the number of vertices in the King's castle, and L (1 <= L <= 1000) is the minimal number of feet that King allows for the wall to come close to the castle.
Next N lines describe coordinates of castle's vertices in a clockwise order. Each line contains two integer numbers Xi and Yi separated by a space (-10000 <= Xi, Yi <= 10000) that represent the coordinates of ith vertex. All vertices are different and the sides of the castle do not intersect anywhere except for vertices.
Output
Write to the output file the single number that represents the minimal possible length of the wall in feet that could be built around the castle to satisfy King's requirements. You must present the integer number of feet to the King, because the floating numbers are not invented yet. However, you must round the result in such a way, that it is accurate to 8 inches (1 foot is equal to 12 inches), since the King will not tolerate larger error in the estimates.
Sample Input
9 100
200 400
300 400
300 300
400 300
400 400
500 400
500 200
350 200
200 200
Sample Output
1628
Hint
结果四舍五入就可以了
- 不是直接求凸包,围住城堡的所需的最小距离,这个是凸包的长度,但是建造的围墙和城堡之间还有一个距离L,所以所求周长比凸包长度要多几段圆弧,所有圆弧的角度和为\(360°\),所以再加上一个半径为L的圆周长即为所求.
- 步进法
#include<iostream>
#include<algorithm>
#include<cmath>
#include<cstdio>
using namespace std;
const int MAX = 5005;
const double PI = acos(-1.0);
typedef struct point {
double x;
double y;
point() {
}
point(double a, double b) {
x = a;
y = b;
}
point operator -(const point &b)const { //返回减去后的新点
return point(x - b.x, y - b.y);
}
double operator *(const point &b)const { //点乘
return x*b.x + y*b.y;
}
}point;
double dist(point p1, point p2) { //返回平面上两点距离
return sqrt((p1 - p2)*(p1 - p2));
}
int n, c, w, ans[MAX], num, sd[MAX], ta, stk[MAX], tp1, tp2;
point x[MAX];
bool cmp(point a, point b) { return a.y < b.y || a.y == b.y && a.x < b.x; } //先按y,再按x从小排序
bool cmulti(point p1, point p2, point p3) { //判断p1p0和p2p0的关系,<0,p1p0在p2p0的逆时针方向
return ((p3.x - p1.x)*(p2.y - p1.y) - (p2.x - p1.x)*(p3.y - p1.y))<0;
}
void Jarvis() {
ta = num = 0;
sd[ta++] = 0, sd[ta++] = 1;
sort(x, x + n, cmp);
for (int i = 2; i < n; i++) {
while (ta > 1 && !cmulti(x[sd[ta - 1]], x[sd[ta - 2]], x[i]))//不是外侧点则回溯,且不取内部点
ta--;
sd[ta++] = i;
}
for (int j = 0; j < ta; j++) {
ans[num++] = sd[j];
}
ta = 0;
sd[ta++] = n - 1;
sd[ta++] = n - 2;
for (int i = n - 3; i >= 0; i--) {
while (ta > 1 && !cmulti(x[sd[ta - 1]], x[sd[ta - 2]], x[i]))
ta--;
sd[ta++] = i;
}
for (int j = 0; j < ta; j++) {
ans[num++] = sd[j];
}
}
int main() {
scanf("%d%d", &n, &c);
for (int i = 0; i < n; i++) {
scanf("%lf%lf", &x[i].x, &x[i].y);
}
Jarvis();
double res1 = 0;
for (int i = 0; i < num - 1; i++) {
res1 += dist(x[ans[i]], x[ans[i + 1]]);
}
res1 += 2 * PI * c;
printf("%.0f\n", res1);
return 0;
}
- 用Gamham-scan重写了一下vo(*  ̄ ▽  ̄ *)ov
#include<iostream>
#include<algorithm>
#include<cmath>
#include<cstdio>
using namespace std;
const int MAX = 5005;
const double PI = acos(-1.0);
typedef struct point {
double x;
double y;
point() {
}
point(double a, double b) {
x = a;
y = b;
}
point operator -(const point &b)const { //返回减去后的新点
return point(x - b.x, y - b.y);
}
double operator *(const point &b)const { //点乘
return x*b.x + y*b.y;
}
}point;
double dist(point p1, point p2) { //返回平面上两点距离
return sqrt((p1 - p2)*(p1 - p2));
}
int n, res[MAX]; //ans为凸包点集坐标,n为点的个数,sd为临时坐标。
int top = 1;
point p[MAX]; //x存放凸包点集
bool cmp(point a, point b) {
if (a.y == b.y) return a.x < b.x;
return a.y < b.y;
}
bool multi(point p1, point p2, point p0) { //判断p1p0和p2p0的关系,<0,p1p0在p2p0的逆时针方向,>0,p1p0在p2p0的顺时针方向
return (p1.x - p0.x)*(p2.y - p0.y) >= (p2.x - p0.x)*(p1.y - p0.y);
}
void Graham(int n) {
int i, len; //top模拟栈顶
sort(p, p + n, cmp);
//少于3个点也就没有办法形成凸包
if (n == 0)return; res[0] = 0;
if (n == 1)return; res[1] = 1;
if (n == 2)return; res[2] = 2;
for (i = 2; i < n; i++) {
while (top&&multi(p[i], p[res[top]], p[res[top - 1]])) //如果当前这个点和栈顶两个点构成折线右拐了,就回溯到上一个点
top--; //弹出栈顶
res[++top] = i; //否则将这个点入栈
}
len = top;
res[++top] = n - 2;
for (int i = n - 3; i >= 0; i--) {
while (top!=len&&multi(p[i], p[res[top]], p[res[top - 1]]))
top--;
res[++top] = i;
}
}
int main() {
int c;
scanf("%d%d", &n, &c);
for (int i = 0; i < n; i++) {
scanf("%lf%lf", &p[i].x, &p[i].y);
}
Graham(n);
double res1 = 0;
for (int i = 0; i < top; i++) {
res1 += dist(p[res[i]], p[res[i + 1]]);
}
res1 += 2 * PI * c;
printf("%.0f\n", res1);
return 0;
}
POJ 1113--Wall(计算凸包)的更多相关文章
- 题解报告:poj 1113 Wall(凸包)
Description Once upon a time there was a greedy King who ordered his chief Architect to build a wall ...
- POJ 1113 Wall【凸包周长】
题目: http://poj.org/problem?id=1113 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...
- POJ 1113 Wall (凸包)
Description Once upon a time there was a greedy King who ordered his chief Architect to build a wall ...
- POJ 1113 Wall(凸包)
[题目链接] http://poj.org/problem?id=1113 [题目大意] 给出一个城堡,要求求出距城堡距离大于L的地方建围墙将城堡围起来求所要围墙的长度 [题解] 画图易得答案为凸包的 ...
- POJ 1113 Wall 求凸包
http://poj.org/problem?id=1113 不多说...凸包网上解法很多,这个是用graham的极角排序,也就是算导上的那个解法 其实其他方法随便乱搞都行...我只是测一下模板... ...
- POJ 1113 Wall 求凸包的两种方法
Wall Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 31199 Accepted: 10521 Descriptio ...
- 2018.07.04 POJ 1113 Wall(凸包)
Wall Time Limit: 1000MS Memory Limit: 10000K Description Once upon a time there was a greedy King wh ...
- POJ 1113 Wall(计算几何の凸包)
Description Once upon a time there was a greedy King who ordered his chief Architect to build a wall ...
- poj 1113 Wall 凸包的应用
题目链接:poj 1113 单调链凸包小结 题解:本题用到的依然是凸包来求,最短的周长,只是多加了一个圆的长度而已,套用模板,就能搞定: AC代码: #include<iostream> ...
- poj 1113:Wall(计算几何,求凸包周长)
Wall Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 28462 Accepted: 9498 Description ...
随机推荐
- 【学习笔记】使用SQLyog连接MySQL数据库
一.使用SQLyog创建数据库用来管理学生信息 #创建数据库student DROP DATABASE IF EXISTS Myschool; CREATE DATABASE Myschool; #在 ...
- ubuntu下安装MySQL8.0
为了一劳永逸不每次都到处找资料,花了一下午时间做了这些.其中大部分是根据官方手册来的,后面部分谢谢大佬的帮助,超开心. 一.首先,将MySQL APT存储库添加到系统的软件存储库列表中 1.转到htt ...
- 移动端下滑刷新插件(jQuery插件)
由于在工作不能独自开发,而且为了给他们方便,自己写过不少的插件,不过今天刚好空闲,发出刚好完成的,移动端的下滑到底刷新插件.我不是很喜欢写插件给别人用,因为用起来自然是简单的,没什么难度,所以一起分享 ...
- asp: AJAX Database
<% @LANGUAGE="VBSCRIPT" CODEPAGE="65001" %> <!DOCTYPE html PUBLIC " ...
- javascript统计一个字符在一段字符串出现次数
<!DOCTYPE html><html lang="en"><head><meta charset="UTF-8" ...
- css样式学习小知识
1. 使用百分比设置宽高 自适用宽高的,有分割的区域,可以适用百分比:30% 70% 如果有一部分是固定的宽度或者高度,可以使用:height: calc( 100% - 36px ); 2. inp ...
- Internet Of Things
- java调用c#dll文件配置
1 在强大的c#语言和java语言之间,二者难免会因为某些特殊的要求会相互调用. 下面就以java调用c#的dll为例做详细介绍 1 在vs中的环境设置如下图,图片中程序仅作为讲解程序,在项目编译成 ...
- Linux 一直提示 login incorrect
- 【NLP_Stanford课堂】句子切分
依照什么切分句子——标点符号 无歧义的:!?等 存在歧义的:. 英文中的.不止表示句号,也可能出现在句子中间,比如缩写Dr. 或者数字里的小数点4.3 解决方法:建立一个二元分类器: 检查“.” 判断 ...