POJ 1113--Wall(计算凸包)
Wall
Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 40363 Accepted: 13754
Description
Once upon a time there was a greedy King who ordered his chief Architect to build a wall around the King's castle. The King was so greedy, that he would not listen to his Architect's proposals to build a beautiful brick wall with a perfect shape and nice tall towers. Instead, he ordered to build the wall around the whole castle using the least amount of stone and labor, but demanded that the wall should not come closer to the castle than a certain distance. If the King finds that the Architect has used more resources to build the wall than it was absolutely necessary to satisfy those requirements, then the Architect will loose his head. Moreover, he demanded Architect to introduce at once a plan of the wall listing the exact amount of resources that are needed to build the wall.

Your task is to help poor Architect to save his head, by writing a program that will find the minimum possible length of the wall that he could build around the castle to satisfy King's requirements.
The task is somewhat simplified by the fact, that the King's castle has a polygonal shape and is situated on a flat ground. The Architect has already established a Cartesian coordinate system and has precisely measured the coordinates of all castle's vertices in feet.
Input
The first line of the input file contains two integer numbers N and L separated by a space. N (3 <= N <= 1000) is the number of vertices in the King's castle, and L (1 <= L <= 1000) is the minimal number of feet that King allows for the wall to come close to the castle.
Next N lines describe coordinates of castle's vertices in a clockwise order. Each line contains two integer numbers Xi and Yi separated by a space (-10000 <= Xi, Yi <= 10000) that represent the coordinates of ith vertex. All vertices are different and the sides of the castle do not intersect anywhere except for vertices.
Output
Write to the output file the single number that represents the minimal possible length of the wall in feet that could be built around the castle to satisfy King's requirements. You must present the integer number of feet to the King, because the floating numbers are not invented yet. However, you must round the result in such a way, that it is accurate to 8 inches (1 foot is equal to 12 inches), since the King will not tolerate larger error in the estimates.
Sample Input
9 100
200 400
300 400
300 300
400 300
400 400
500 400
500 200
350 200
200 200
Sample Output
1628
Hint
结果四舍五入就可以了
- 不是直接求凸包,围住城堡的所需的最小距离,这个是凸包的长度,但是建造的围墙和城堡之间还有一个距离L,所以所求周长比凸包长度要多几段圆弧,所有圆弧的角度和为\(360°\),所以再加上一个半径为L的圆周长即为所求.
- 步进法
#include<iostream>
#include<algorithm>
#include<cmath>
#include<cstdio>
using namespace std;
const int MAX = 5005;
const double PI = acos(-1.0);
typedef struct point {
double x;
double y;
point() {
}
point(double a, double b) {
x = a;
y = b;
}
point operator -(const point &b)const { //返回减去后的新点
return point(x - b.x, y - b.y);
}
double operator *(const point &b)const { //点乘
return x*b.x + y*b.y;
}
}point;
double dist(point p1, point p2) { //返回平面上两点距离
return sqrt((p1 - p2)*(p1 - p2));
}
int n, c, w, ans[MAX], num, sd[MAX], ta, stk[MAX], tp1, tp2;
point x[MAX];
bool cmp(point a, point b) { return a.y < b.y || a.y == b.y && a.x < b.x; } //先按y,再按x从小排序
bool cmulti(point p1, point p2, point p3) { //判断p1p0和p2p0的关系,<0,p1p0在p2p0的逆时针方向
return ((p3.x - p1.x)*(p2.y - p1.y) - (p2.x - p1.x)*(p3.y - p1.y))<0;
}
void Jarvis() {
ta = num = 0;
sd[ta++] = 0, sd[ta++] = 1;
sort(x, x + n, cmp);
for (int i = 2; i < n; i++) {
while (ta > 1 && !cmulti(x[sd[ta - 1]], x[sd[ta - 2]], x[i]))//不是外侧点则回溯,且不取内部点
ta--;
sd[ta++] = i;
}
for (int j = 0; j < ta; j++) {
ans[num++] = sd[j];
}
ta = 0;
sd[ta++] = n - 1;
sd[ta++] = n - 2;
for (int i = n - 3; i >= 0; i--) {
while (ta > 1 && !cmulti(x[sd[ta - 1]], x[sd[ta - 2]], x[i]))
ta--;
sd[ta++] = i;
}
for (int j = 0; j < ta; j++) {
ans[num++] = sd[j];
}
}
int main() {
scanf("%d%d", &n, &c);
for (int i = 0; i < n; i++) {
scanf("%lf%lf", &x[i].x, &x[i].y);
}
Jarvis();
double res1 = 0;
for (int i = 0; i < num - 1; i++) {
res1 += dist(x[ans[i]], x[ans[i + 1]]);
}
res1 += 2 * PI * c;
printf("%.0f\n", res1);
return 0;
}
- 用Gamham-scan重写了一下vo(*  ̄ ▽  ̄ *)ov
#include<iostream>
#include<algorithm>
#include<cmath>
#include<cstdio>
using namespace std;
const int MAX = 5005;
const double PI = acos(-1.0);
typedef struct point {
double x;
double y;
point() {
}
point(double a, double b) {
x = a;
y = b;
}
point operator -(const point &b)const { //返回减去后的新点
return point(x - b.x, y - b.y);
}
double operator *(const point &b)const { //点乘
return x*b.x + y*b.y;
}
}point;
double dist(point p1, point p2) { //返回平面上两点距离
return sqrt((p1 - p2)*(p1 - p2));
}
int n, res[MAX]; //ans为凸包点集坐标,n为点的个数,sd为临时坐标。
int top = 1;
point p[MAX]; //x存放凸包点集
bool cmp(point a, point b) {
if (a.y == b.y) return a.x < b.x;
return a.y < b.y;
}
bool multi(point p1, point p2, point p0) { //判断p1p0和p2p0的关系,<0,p1p0在p2p0的逆时针方向,>0,p1p0在p2p0的顺时针方向
return (p1.x - p0.x)*(p2.y - p0.y) >= (p2.x - p0.x)*(p1.y - p0.y);
}
void Graham(int n) {
int i, len; //top模拟栈顶
sort(p, p + n, cmp);
//少于3个点也就没有办法形成凸包
if (n == 0)return; res[0] = 0;
if (n == 1)return; res[1] = 1;
if (n == 2)return; res[2] = 2;
for (i = 2; i < n; i++) {
while (top&&multi(p[i], p[res[top]], p[res[top - 1]])) //如果当前这个点和栈顶两个点构成折线右拐了,就回溯到上一个点
top--; //弹出栈顶
res[++top] = i; //否则将这个点入栈
}
len = top;
res[++top] = n - 2;
for (int i = n - 3; i >= 0; i--) {
while (top!=len&&multi(p[i], p[res[top]], p[res[top - 1]]))
top--;
res[++top] = i;
}
}
int main() {
int c;
scanf("%d%d", &n, &c);
for (int i = 0; i < n; i++) {
scanf("%lf%lf", &p[i].x, &p[i].y);
}
Graham(n);
double res1 = 0;
for (int i = 0; i < top; i++) {
res1 += dist(p[res[i]], p[res[i + 1]]);
}
res1 += 2 * PI * c;
printf("%.0f\n", res1);
return 0;
}
POJ 1113--Wall(计算凸包)的更多相关文章
- 题解报告:poj 1113 Wall(凸包)
Description Once upon a time there was a greedy King who ordered his chief Architect to build a wall ...
- POJ 1113 Wall【凸包周长】
题目: http://poj.org/problem?id=1113 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...
- POJ 1113 Wall (凸包)
Description Once upon a time there was a greedy King who ordered his chief Architect to build a wall ...
- POJ 1113 Wall(凸包)
[题目链接] http://poj.org/problem?id=1113 [题目大意] 给出一个城堡,要求求出距城堡距离大于L的地方建围墙将城堡围起来求所要围墙的长度 [题解] 画图易得答案为凸包的 ...
- POJ 1113 Wall 求凸包
http://poj.org/problem?id=1113 不多说...凸包网上解法很多,这个是用graham的极角排序,也就是算导上的那个解法 其实其他方法随便乱搞都行...我只是测一下模板... ...
- POJ 1113 Wall 求凸包的两种方法
Wall Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 31199 Accepted: 10521 Descriptio ...
- 2018.07.04 POJ 1113 Wall(凸包)
Wall Time Limit: 1000MS Memory Limit: 10000K Description Once upon a time there was a greedy King wh ...
- POJ 1113 Wall(计算几何の凸包)
Description Once upon a time there was a greedy King who ordered his chief Architect to build a wall ...
- poj 1113 Wall 凸包的应用
题目链接:poj 1113 单调链凸包小结 题解:本题用到的依然是凸包来求,最短的周长,只是多加了一个圆的长度而已,套用模板,就能搞定: AC代码: #include<iostream> ...
- poj 1113:Wall(计算几何,求凸包周长)
Wall Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 28462 Accepted: 9498 Description ...
随机推荐
- mysql四:数据操作
一.介绍 MySQL数据操作: DML ======================================================== 在MySQL管理软件中,可以通过SQL语句中的 ...
- 前端使用express+node实现接口模拟及websocket通讯
简述如何使用node+express实现接口连接及入门websocket通讯.使用技术栈:node + express + typescript + websocket. 1.接口实现 这里描述前端如 ...
- dhtml
网页换肤:<div> <button>red</button> <button>blue</button> <button>bl ...
- SharePoint 2013 - System Features
1. Embed Information & Convert to PDF 功能,在文档的preview界面(hover panel); 2. Share功能可以选择是否发送邮件 -- Don ...
- Polly一种.NET弹性和瞬态故障处理库(重试策略、断路器、超时、隔板隔离、缓存、回退、策略包装)
下载地址:https://github.com/App-vNext/Polly 该库实现了七种恢复策略. 重试策略(Retry) 重试策略针对的前置条件是短暂的故障延迟且在短暂的延迟之后能够自我纠正. ...
- Business Component(BC)和Business Object(BO)
Siebel应用架构的一个成功的地方就是在应用里引入了BC,BO的概念,从而使得几千张关系数据表能够按照业务的含义组织成业务对象,对于业务人员而言具有了业务上的含义,而不仅仅是从技术人员的观点来对待数 ...
- jquery:jqery表单属性 值操作
重置表单(且清空隐藏域) $('#myform')[0].reset() DOM属性相关操作 返回属性值 $(selector).attr(attribute) 设置属性值 $(selecto ...
- Oracle里删除重复记录,保留一项
我们在使用数据库的时候,有时数据会有所重复,当我们只需要一项数据时,不需要显示重复的记录时 如下就有SQL代码: --查找表中多余的重复记录,重复记录是根据单个字段来判断 select * from ...
- Flask入门文件上传flask-uploads(八)
1 视图传递多个参数 (1) 普通传参 : 关键字参数传递 return render_template('模板名称.html',arg1=val1,arg2=val2...) (2) 字典传参 : ...
- C#转Java之路之一:线程
Java实现多线程方式有以下两种: public class HelloWordThread implements Runnable{ public void run(){ System.out.pr ...