DQN 处理 CartPole 问题——使用强化学习,本质上是训练MLP,预测每一个动作的得分
代码:
# -*- coding: utf-8 -*-
import random
import gym
import numpy as np
from collections import deque
from keras.models import Sequential
from keras.layers import Dense
from keras.optimizers import Adam
from keras.utils.vis_utils import plot_model EPISODES = 1000 class DQNAgent:
def __init__(self, state_size, action_size):
self.state_size = state_size
self.action_size = action_size
self.memory = deque(maxlen=2000)
self.gamma = 0.95 # discount rate
#self.epsilon = 1.0 # exploration rate
self.epsilon = 0.4 # exploration rate
self.epsilon_min = 0.01
self.epsilon_decay = 0.995
self.learning_rate = 0.001
self.model = self._build_model()
#可视化MLP结构
plot_model(self.model, to_file='dqn-cartpole-v0-mlp.png', show_shapes=False) def _build_model(self):
# Neural Net for Deep-Q learning Model
model = Sequential()
model.add(Dense(24, input_dim=self.state_size, activation='relu'))
model.add(Dense(24, activation='relu'))
model.add(Dense(self.action_size, activation='linear'))
model.compile(loss='mse',
optimizer=Adam(lr=self.learning_rate))
return model def remember(self, state, action, reward, next_state, done):
self.memory.append((state, action, reward, next_state, done)) def act(self, state):
if np.random.rand() <= self.epsilon:
return random.randrange(self.action_size)
act_values = self.model.predict(state)
#print("act_values:")
#print(act_values)
return np.argmax(act_values[0]) # returns action def replay(self, batch_size):
minibatch = random.sample(self.memory, batch_size)
for state, action, reward, next_state, done in minibatch:
target = reward
if not done:
target = (reward + self.gamma *
np.amax(self.model.predict(next_state)[0]))
target_f = self.model.predict(state)
target_f[0][action] = target
self.model.fit(state, target_f, epochs=1, verbose=0)
#if self.epsilon > self.epsilon_min:
# self.epsilon *= self.epsilon_decay def load(self, name):
self.model.load_weights(name) def save(self, name):
self.model.save_weights(name) if __name__ == "__main__":
env = gym.make('CartPole-v0')
state_size = env.observation_space.shape[0]
action_size = env.action_space.n #print(state_size)
#print(action_size) agent = DQNAgent(state_size, action_size) done = False
batch_size = 32
avg=0 for e in range(EPISODES):
state = env.reset()
state = np.reshape(state, [1, state_size])
for time in range(500):
env.render()
action = agent.act(state)
next_state, reward, done, _ = env.step(action)
reward = reward if not done else -10
next_state = np.reshape(next_state, [1, state_size])
agent.remember(state, action, reward, next_state, done)
state = next_state
if done:
print("episode: {}/{}, score: {}, e: {:.2}"
.format(e, EPISODES, time, agent.epsilon))
avg+=time
break
if len(agent.memory) > batch_size:
agent.replay(batch_size) print("Avg score:{}".format(avg/1000))
基本思路:

让他自己训练玩这个游戏(每次应该左右移动的距离),基本思路就是:
本质上就是使用MLP训练(动作,得分)
这个得分是坚持时间的长短,如果时间长得分就高。
但是我感觉这个gym自己做了很多事情,比如度量奖励分数,action描述等。待进一步挖掘!
DQN 处理 CartPole 问题——使用强化学习,本质上是训练MLP,预测每一个动作的得分的更多相关文章
- 【转载】 “强化学习之父”萨顿:预测学习马上要火,AI将帮我们理解人类意识
原文地址: https://yq.aliyun.com/articles/400366 本文来自AI新媒体量子位(QbitAI) ------------------------------- ...
- LSTM入门学习——本质上就是比RNN的隐藏层公式稍微复杂了一点点而已
LSTM入门学习 摘自:http://blog.csdn.net/hjimce/article/details/51234311 下面先给出LSTM的网络结构图: 看到网络结构图好像很复杂的样子,其实 ...
- 强化学习系列之:Deep Q Network (DQN)
文章目录 [隐藏] 1. 强化学习和深度学习结合 2. Deep Q Network (DQN) 算法 3. 后续发展 3.1 Double DQN 3.2 Prioritized Replay 3. ...
- 强化学习(Reinforcement Learning)中的Q-Learning、DQN,面试看这篇就够了!
1. 什么是强化学习 其他许多机器学习算法中学习器都是学得怎样做,而强化学习(Reinforcement Learning, RL)是在尝试的过程中学习到在特定的情境下选择哪种行动可以得到最大的回报. ...
- 【转】【强化学习】Deep Q Network(DQN)算法详解
原文地址:https://blog.csdn.net/qq_30615903/article/details/80744083 DQN(Deep Q-Learning)是将深度学习deeplearni ...
- DQN 强化学习
pytorch比tenserflow简单. 所以我们模仿用tensorflow写的强化学习. 学习资料: 本节的全部代码 Tensorflow 的 100行 DQN 代码 我制作的 DQN 动画简介 ...
- ICML 2018 | 从强化学习到生成模型:40篇值得一读的论文
https://blog.csdn.net/y80gDg1/article/details/81463731 感谢阅读腾讯AI Lab微信号第34篇文章.当地时间 7 月 10-15 日,第 35 届 ...
- Deep Learning专栏--强化学习之MDP、Bellman方程(1)
本文主要介绍强化学习的一些基本概念:包括MDP.Bellman方程等, 并且讲述了如何从 MDP 过渡到 Reinforcement Learning. 1. 强化学习基本概念 这里还是放上David ...
- 强化学习之三:双臂赌博机(Two-armed Bandit)
本文是对Arthur Juliani在Medium平台发布的强化学习系列教程的个人中文翻译,该翻译是基于个人分享知识的目的进行的,欢迎交流!(This article is my personal t ...
随机推荐
- python模块学习(一)
模块,用一砣代码实现了某个功能的代码集合. 类似于函数式编程和面向过程编程,函数式编程则完成一个功能,其他代码用来调用即可,提供了代码的重用性和代码间的耦合.而对于一个复杂的功能来,可能需要多个函数才 ...
- nginx反向代理三台web
1.首先我们需要在服务器中三个不同名字,并将他们赋值 2.切换到nginx—conf 把三台机器的nginx的配置文件分别命名为web1.conf.web2.conf.web3.conf vim的赋 ...
- Java并发—简介与线程创建
程序.进程和线程 程序:一段静态的代码,一组指令的有序集合,不运行的话只是一堆代码. 程序并不能单独执行,只有将程序加载到内存中,系统为他分配资源后才能够执行,这种执行的程序称之为进程.也就是说进程是 ...
- java中使用axis发布和调用webService及dom4j解析xml字符串
工作中需要调用webService服务,这里记录一下如何在java中发布和调用webService. 需要的jar包: webService服务端: import javax.jws.WebMetho ...
- 【AWS】AWS云计算赋能数字化转型专题研讨会圆满落幕
大会精彩回顾:查看原文 大会使用的PPT下载地址:点击下载
- Ubuntu 下 java 版本的切换
切换的方法很简单,使用下面的两个命令即可: update-alternatives --config java update-alternatives --config javac eg: root@ ...
- Andorid:日常学习笔记(3)——掌握日志工具的使用
Andorid:日常学习笔记(3)——掌握日志工具的使用 使用Android的日志工具Log 方法: Android中的日志工具类为Log,这个类提供了如下方法来供我们打印日志: 使用方法: Log. ...
- HackerRank - maximum-perimeter-triangle 【水】
题意 给出一系列数字,判断其中哪三个数字可以构成一个三角形,如果有多个,输出周长最大的那个,如果没有输出 - 1 思路 数据较小,所有情况FOR一遍 判断一下 AC代码 #include <cs ...
- iOS UIFont 的学习与使用
通常,我们使用字体 都是系统默认的字体. 有时候 从阅读体验,美观度 设计师都会考虑用一些 更高大尚的字体. 系统字体库 给英文 各种style的发挥空间很大,但是 中文则不然. 但是苹果 给使用中文 ...
- 【TECH】CAS php客户端配置
搞完java又搞php,我整个人都不好了=.= 跟大师在linux上折腾了一下午,没调出来,早上在windows上跑通了,中午终于在linux上搞定了,嘿嘿. server端配置参见这里 在windo ...