[SCOI2007]最大土地面积(旋转卡壳)
首先,最大四边形的四个点一定在凸包上
所以先求凸包
有个结论,若是随机数据,凸包包括的点大约是\(\log_2n\)个
然鹅,此题绝对不会这么轻松,若\(O(n^4)\)枚举,只有50分
所以还是要想正解
旋转卡壳是继承上一个点枚举,所以枚举对角线上的两点,通过旋转卡壳找剩余两点
复杂度\(O(n^2)\)
#include<iostream>
#include<cstdio>
#include<string>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<queue>
#include<stack>
#include<set>
#include<bitset>
#include<sstream>
#include<cstdlib>
#define QAQ int
#define TAT long long
#define OwO bool
#define ORZ double
#define F(i,j,n) for(QAQ i=j;i<=n;++i)
#define E(i,j,n) for(QAQ i=j;i>=n;--i)
#define MES(i,j) memset(i,j,sizeof(i))
#define MEC(i,j) memcpy(i,j,sizeof(j))
using namespace std;
const QAQ N=200005;
const ORZ eps=1e-8;
QAQ n;
struct Point{
ORZ x,y;
friend Point operator + (Point a,Point b){
Point t;
t.x=a.x+b.x;t.y=a.y+b.y;
return t;
}
friend Point operator - (Point a,Point b){
Point t;
t.x=a.x-b.x;t.y=a.y-b.y;
return t;
}
friend ORZ operator ^ (Point a,Point b){
return a.x*b.y-a.y*b.x;
}
friend ORZ operator * (Point a,Point b){
return a.x*b.x+a.y*b.y;
}
}a[N],s[N];
QAQ top;
ORZ ans;
QAQ sign(ORZ x){
return fabs(x)<=eps ? 0 : (x>0 ? 1 : -1);
}
ORZ dis(Point i,Point j){
return (i.x-j.x)*(i.x-j.x)+(i.y-j.y)*(i.y-j.y);
}
OwO comp(Point i,Point j){
ORZ x=(i-a[1])^(j-a[1]);
return x>0||x==0&&dis(a[1],i)<dis(a[1],j);
}
void Graham(){
QAQ k=1;
F(i,2,n) if(a[i].y<a[k].y||(a[i].y==a[k].y&&a[i].x<a[k].x)) k=i;
swap(a[k],a[1]);
sort(a+2,a+n+1,comp);
s[++top]=a[1];s[++top]=a[2];
F(i,3,n){
while(top>=2&&sign((s[top]-s[top-1]) ^ (a[i]-s[top-1]))<=0) top--; //"<=0" 别忘"="
s[++top]=a[i];
}
}
ORZ cal(Point i,Point j,Point k,Point l){
return (((k-i)^(j-i))+((l-i)^(k-i)))/2.0;
}
ORZ work(){
ORZ ans=0;
s[top+1]=a[1];
F(i,1,top){
QAQ a=i%top+1,b=(i+2)%top+1;
F(j,i+2,top){
while(a%top+1!=j&&(((s[a]-s[i])^(s[j]-s[i])))<(((s[a+1]-s[i])^(s[j]-s[i])))) (a%=top)+=1;
while(b%top+1!=j&&(((s[j]-s[i])^(s[b]-s[i])))<(((s[j]-s[i])^(s[b+1]-s[i])))) (b%=top)+=1;
//注意叉积的前后向量顺序
ans=max(ans,fabs(((s[a]-s[i])^(s[j]-s[i]))+((s[j]-s[i])^(s[b]-s[i]))));
}
}
return ans;
}
QAQ main(){
scanf("%d",&n);
F(i,1,n) scanf("%lf%lf",&a[i].x,&a[i].y);
Graham();
printf("%.3lf\n",work());
return 0;
}
[SCOI2007]最大土地面积(旋转卡壳)的更多相关文章
- bzoj1069 [SCOI2007]最大土地面积 旋转卡壳
1069: [SCOI2007]最大土地面积 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 3767 Solved: 1501[Submit][Sta ...
- BZOJ 1069: [SCOI2007]最大土地面积(旋转卡壳)
题目链接~ 1069: [SCOI2007]最大土地面积 思路很简单,极角排序求完凸包后,在凸包上枚举对角线,然后两边分别来两个点旋转卡壳一下,搞定! 不过计算几何的题目就是这样,程序中间的处理还是比 ...
- BZOJ 1069: [SCOI2007]最大土地面积 [旋转卡壳]
1069: [SCOI2007]最大土地面积 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 2978 Solved: 1173[Submit][Sta ...
- bzoj 1069 [SCOI2007]最大土地面积——旋转卡壳
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1069 发现 n 可以 n^2 .所以枚举对角线,分开的两部分三角形就可以旋转卡壳了. 注意坐 ...
- 1069: [SCOI2007]最大土地面积|旋转卡壳
旋转卡壳就是先求出凸包.然后在凸包上枚举四边形的对角线两側分别找面积最大的三角形 因为在两側找面积最大的三角形的顶点是单调的所以复杂度就是n2 单调的这个性质能够自行绘图感受一下,似乎比較显然 #in ...
- luogu4166 最大土地面积 (旋转卡壳)
首先这样的点一定在凸包上 然后旋转卡壳就可以 具体来说,枚举对角线的一个端点,另一个端点在凸包上转,剩下两个点就是一个叉积最大一个最小,而这两个点也是跟着转的 所以是$O(N^2)$ #include ...
- bzoj 1069 [SCOI2007]最大土地面积(旋转卡壳)
1069: [SCOI2007]最大土地面积 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 2277 Solved: 853[Submit][Stat ...
- [Bzoj1069][Scoi2007]最大土地面积(凸包)(旋转卡壳)
1069: [SCOI2007]最大土地面积 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 3629 Solved: 1432[Submit][Sta ...
- luogu P4166 [SCOI2007]最大土地面积 凸包 旋转卡壳
LINK:最大土地面积 容易想到四边形的边在凸包上面 考虑暴力枚举凸包上的四个点计算面积. 不过可以想到可以直接枚举对角线的两个点找到再在两边各找一个点 这样复杂度为\(n^3\) 可以得到50分. ...
- 【BZOJ】1069: [SCOI2007]最大土地面积(凸包+旋转卡壳)
http://www.lydsy.com/JudgeOnline/problem.php?id=1069 显然这四个点在凸包上,然后枚举两个点找上下最大的三角形即可. 找三角形表示只想到三分QAQ.. ...
随机推荐
- java游戏制作之水果忍者
水果忍者的原理很简单,主要就是采用随机的方式是画面上面出现水果. package Fruitninja; import java.awt.Dimension; import java.awt.Grap ...
- 对象序列化中transient关键字的用途
- 第01章 开发准备(对最新版的RN进行了升级)1-2+项目技术分解
- 使用百度翻译的API接口
http://api.fanyi.baidu.com/api/trans/product/desktop 这是申请的接口地址,会得到一个APPID和一个钥密 然后下载PHP的对应的代码 有一个PHP文 ...
- Luogu 3616 富金森林公园
刚看到此题的时候:sb分块??? Rorshach dalao甩手一句看题 于是回去看题……果然是题读错了…… [思路] 对权值离散化后(要先读入所有输入里的权值一起离散化……所以一共有4e4个数据( ...
- rpm遇到的坑-与VMP冲突
rpm遇到的坑-与VMP冲突 摘自:https://blog.csdn.net/shijichao2/article/details/78797586 2017年12月13日 22:29:21 阅读数 ...
- 2.8.2 并发下的ArrayList,以及源码分析
package 第二章.并发下的ArrayList; import java.util.ArrayList;import java.util.List; /** * Created by zzq on ...
- Java 错误结果Throw/Throws
目录 java处理异常方式 throw的作用 throws的作用 方法原理 举例 总结 个人实例 1.java处理异常方式 在java代码中如果发生异常的话,jvm会抛出 ...
- Alpha冲刺(三)
Information: 队名:彳艮彳亍团队 组长博客:戳我进入 作业博客:班级博客本次作业的链接 Details: 组员1(组长)柯奇豪 过去两天完成了哪些任务 ssm框架的使用并实现简单的数据处理 ...
- DB2 添加license
DB2 - DB2COPY1 - DB2-0 服务不能启动报的错是这样的:Microsoft Management Console Windows 不能在 本地计算机 启动 DB2 - DB2.有 ...