[SCOI2007]最大土地面积(旋转卡壳)
首先,最大四边形的四个点一定在凸包上
所以先求凸包
有个结论,若是随机数据,凸包包括的点大约是\(\log_2n\)个
然鹅,此题绝对不会这么轻松,若\(O(n^4)\)枚举,只有50分
所以还是要想正解
旋转卡壳是继承上一个点枚举,所以枚举对角线上的两点,通过旋转卡壳找剩余两点
复杂度\(O(n^2)\)
#include<iostream>
#include<cstdio>
#include<string>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<queue>
#include<stack>
#include<set>
#include<bitset>
#include<sstream>
#include<cstdlib>
#define QAQ int
#define TAT long long
#define OwO bool
#define ORZ double
#define F(i,j,n) for(QAQ i=j;i<=n;++i)
#define E(i,j,n) for(QAQ i=j;i>=n;--i)
#define MES(i,j) memset(i,j,sizeof(i))
#define MEC(i,j) memcpy(i,j,sizeof(j))
using namespace std;
const QAQ N=200005;
const ORZ eps=1e-8;
QAQ n;
struct Point{
ORZ x,y;
friend Point operator + (Point a,Point b){
Point t;
t.x=a.x+b.x;t.y=a.y+b.y;
return t;
}
friend Point operator - (Point a,Point b){
Point t;
t.x=a.x-b.x;t.y=a.y-b.y;
return t;
}
friend ORZ operator ^ (Point a,Point b){
return a.x*b.y-a.y*b.x;
}
friend ORZ operator * (Point a,Point b){
return a.x*b.x+a.y*b.y;
}
}a[N],s[N];
QAQ top;
ORZ ans;
QAQ sign(ORZ x){
return fabs(x)<=eps ? 0 : (x>0 ? 1 : -1);
}
ORZ dis(Point i,Point j){
return (i.x-j.x)*(i.x-j.x)+(i.y-j.y)*(i.y-j.y);
}
OwO comp(Point i,Point j){
ORZ x=(i-a[1])^(j-a[1]);
return x>0||x==0&&dis(a[1],i)<dis(a[1],j);
}
void Graham(){
QAQ k=1;
F(i,2,n) if(a[i].y<a[k].y||(a[i].y==a[k].y&&a[i].x<a[k].x)) k=i;
swap(a[k],a[1]);
sort(a+2,a+n+1,comp);
s[++top]=a[1];s[++top]=a[2];
F(i,3,n){
while(top>=2&&sign((s[top]-s[top-1]) ^ (a[i]-s[top-1]))<=0) top--; //"<=0" 别忘"="
s[++top]=a[i];
}
}
ORZ cal(Point i,Point j,Point k,Point l){
return (((k-i)^(j-i))+((l-i)^(k-i)))/2.0;
}
ORZ work(){
ORZ ans=0;
s[top+1]=a[1];
F(i,1,top){
QAQ a=i%top+1,b=(i+2)%top+1;
F(j,i+2,top){
while(a%top+1!=j&&(((s[a]-s[i])^(s[j]-s[i])))<(((s[a+1]-s[i])^(s[j]-s[i])))) (a%=top)+=1;
while(b%top+1!=j&&(((s[j]-s[i])^(s[b]-s[i])))<(((s[j]-s[i])^(s[b+1]-s[i])))) (b%=top)+=1;
//注意叉积的前后向量顺序
ans=max(ans,fabs(((s[a]-s[i])^(s[j]-s[i]))+((s[j]-s[i])^(s[b]-s[i]))));
}
}
return ans;
}
QAQ main(){
scanf("%d",&n);
F(i,1,n) scanf("%lf%lf",&a[i].x,&a[i].y);
Graham();
printf("%.3lf\n",work());
return 0;
}
[SCOI2007]最大土地面积(旋转卡壳)的更多相关文章
- bzoj1069 [SCOI2007]最大土地面积 旋转卡壳
1069: [SCOI2007]最大土地面积 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 3767 Solved: 1501[Submit][Sta ...
- BZOJ 1069: [SCOI2007]最大土地面积(旋转卡壳)
题目链接~ 1069: [SCOI2007]最大土地面积 思路很简单,极角排序求完凸包后,在凸包上枚举对角线,然后两边分别来两个点旋转卡壳一下,搞定! 不过计算几何的题目就是这样,程序中间的处理还是比 ...
- BZOJ 1069: [SCOI2007]最大土地面积 [旋转卡壳]
1069: [SCOI2007]最大土地面积 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 2978 Solved: 1173[Submit][Sta ...
- bzoj 1069 [SCOI2007]最大土地面积——旋转卡壳
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1069 发现 n 可以 n^2 .所以枚举对角线,分开的两部分三角形就可以旋转卡壳了. 注意坐 ...
- 1069: [SCOI2007]最大土地面积|旋转卡壳
旋转卡壳就是先求出凸包.然后在凸包上枚举四边形的对角线两側分别找面积最大的三角形 因为在两側找面积最大的三角形的顶点是单调的所以复杂度就是n2 单调的这个性质能够自行绘图感受一下,似乎比較显然 #in ...
- luogu4166 最大土地面积 (旋转卡壳)
首先这样的点一定在凸包上 然后旋转卡壳就可以 具体来说,枚举对角线的一个端点,另一个端点在凸包上转,剩下两个点就是一个叉积最大一个最小,而这两个点也是跟着转的 所以是$O(N^2)$ #include ...
- bzoj 1069 [SCOI2007]最大土地面积(旋转卡壳)
1069: [SCOI2007]最大土地面积 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 2277 Solved: 853[Submit][Stat ...
- [Bzoj1069][Scoi2007]最大土地面积(凸包)(旋转卡壳)
1069: [SCOI2007]最大土地面积 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 3629 Solved: 1432[Submit][Sta ...
- luogu P4166 [SCOI2007]最大土地面积 凸包 旋转卡壳
LINK:最大土地面积 容易想到四边形的边在凸包上面 考虑暴力枚举凸包上的四个点计算面积. 不过可以想到可以直接枚举对角线的两个点找到再在两边各找一个点 这样复杂度为\(n^3\) 可以得到50分. ...
- 【BZOJ】1069: [SCOI2007]最大土地面积(凸包+旋转卡壳)
http://www.lydsy.com/JudgeOnline/problem.php?id=1069 显然这四个点在凸包上,然后枚举两个点找上下最大的三角形即可. 找三角形表示只想到三分QAQ.. ...
随机推荐
- 搭建J2EE开发平台-Eclipse+MySql+tomcat
搭建J2EE开发平台-Eclipse+MySql+tomcat 分类: ·Java 2010-10-10 15:45 2596人阅读 评论(3) 收藏 举报 mysql平台eclipsetomcatj ...
- HashMap和HashSet的相同点和不同点
Map集合,就是有一对属性值的集合,属性包含key,和value.关键字key是唯一不重复的.Map是一个有序的集合,所以查询起来速度很快.而HashSet就像是把HashMap中value去掉,说白 ...
- cocos+kbe问题记录
1.不要使用setTimeout函数 setTimeout函数,setTimeout() 方法用于在指定的毫秒数后调用函数或计算表达式. 是HTML DOM中的方法,在游戏中使用,属于全局的延时,当游 ...
- Apache logresolve命令
一.简介 logresolve是一个解析Apache访问日志中IP地址的后处理程序. 二.语法 logresolve [ -s filename ] [ -c ] < access_log &g ...
- win10手动开启wifi
win+R键,输入cmd,以管理员身份运行,输入netsh wlan set hostednetwork mode=allow ssid=wifi key=wifimima123回车 解释一下: ss ...
- Swing滚动条重写
Swing滚动条重写 摘自:https://blog.csdn.net/qq_40064948/article/details/81738191 未验证 Swing滚动条重写 2018年08月16日 ...
- File类中的list()和listFiles()方法
list()方法是返回某个目录下的所有文件和目录的文件名,返回的是String数组 listFiles()方法是返回某个目录下所有文件和目录的绝对路径,返回的是File数组 public class ...
- 手机APP兼容性测试
兼容性测试方案 兼容性问题 屏幕分辨率兼容性问题 软件(iOS和Android系统版本及不同厂家的定制ROM)兼容性问题 硬件(不同的CPU.内存大小等等)兼容性问题 网络(2G/3G/4G/WIFI ...
- [GO]全局变量
package main import "fmt" func test01() { fmt.Println("test a = ", a) } //a := 1 ...
- 如何看待那些不能重现的bug?
在我们日常测试活动中,经常会发现一些bug,但是这些bug可能就是昙花一现,再也无法(或者很难)重现出来,内心灰常崩溃.那到底有哪些方面可能会导致这类的缺陷发生呢? 我以自己工作中所遇到的给出一些自己 ...