传送门

考虑一下,答案就是全局和减去舍弃和

不难发现,如果我们按行数+列数的奇偶性分为两类,那么每一类中的数必然互不相邻

那么我们把原图的点分为黑点和白点两类,原地向白点连边,黑点向汇点连边,容量为点权,然后白点向相邻的黑点连边

考虑一下,不能有相邻的,就是在残留网络中不能有$s->u->v->t$这一条路径,那么肯定要在某一个地方割掉。然后要求和最大,所以求得是最小割

然后最小割等于最大流,求一下最大流即可

 //minamoto
#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
#define inf 0x3f3f3f3f
using namespace std;
#define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
char buf[<<],*p1=buf,*p2=buf;
inline int read(){
#define num ch-'0'
char ch;bool flag=;int res;
while(!isdigit(ch=getc()))
(ch=='-')&&(flag=true);
for(res=num;isdigit(ch=getc());res=res*+num);
(flag)&&(res=-res);
#undef num
return res;
}
const int N=,M=;
int dx[]={,-,,},dy[]={,,,-};
int ver[M],Next[M],edge[M],head[N],dep[N],cur[N],tot=;
int n,m,s,t,ans;
queue<int> q;
inline void add(int u,int v,int e){
ver[++tot]=v,Next[tot]=head[u],head[u]=tot,edge[tot]=e;
ver[++tot]=u,Next[tot]=head[v],head[v]=tot,edge[tot]=;
}
bool bfs(){
memset(dep,-,sizeof(dep));
while(!q.empty()) q.pop();
for(int i=;i<=n*m+;++i) cur[i]=head[i];
q.push(s),dep[s]=;
while(!q.empty()){
int u=q.front();q.pop();
for(int i=head[u];i;i=Next[i]){
int v=ver[i];
if(dep[v]<&&edge[i]){
dep[v]=dep[u]+,q.push(v);
if(v==t) return true;
}
}
}
return false;
}
int dfs(int u,int limit){
if(!limit||u==t) return limit;
int flow=,f;
for(int i=cur[u];i;i=Next[i]){
int v=ver[i];cur[u]=i;
if(dep[v]==dep[u]+&&(f=dfs(v,min(limit,edge[i])))){
flow+=f,limit-=f;
edge[i]-=f,edge[i^]+=f;
if(!limit) break;
}
}
return flow;
}
int dinic(){
int flow=;
while(bfs()) flow+=dfs(s,inf);
return flow;
}
int main(){
n=read(),m=read();
s=,t=n*m+;
for(int i=;i<=n;++i)
for(int j=;j<=m;++j){
int x=read();ans+=x;
int id=(i-)*m+j;
((i+j)&)?(add(s,id,x)):(add(id,t,x));
}
for(int i=;i<=n;++i)
for(int j=;j<=m;++j)
if((i+j)&){
int id=(i-)*m+j;
for(int k=;k<;++k){
int xx=i+dx[k],yy=j+dy[k];
if(xx<=||xx>n||yy<=||yy>m) continue;
add(id,(xx-)*m+yy,inf);
}
}
printf("%d\n",ans-dinic());
return ;
}

洛谷P2774 方格取数问题(最小割)的更多相关文章

  1. 洛谷P2774 方格取数问题(最小割)

    题意 $n \times m$的矩阵,不能取相邻的元素,问最大能取多少 Sol 首先补集转化一下:最大权值 = sum - 使图不连通的最小权值 进行黑白染色 从S向黑点连权值为点权的边 从白点向T连 ...

  2. 洛谷 P2774 方格取数问题 解题报告

    P2774 方格取数问题 题目背景 none! 题目描述 在一个有 \(m*n\) 个方格的棋盘中,每个方格中有一个正整数.现要从方格中取数,使任意 2 个数所在方格没有公共边,且取出的数的总和最大. ...

  3. 洛谷 - P2774 - 方格取数问题 - 二分图最大独立点集 - 最小割

    https://www.luogu.org/problemnew/show/P2774 把两个相邻的节点连边,这些边就是要方便最小割割断其他边存在的,容量无穷. 这种类似的问题的话,把二分图的一部分( ...

  4. 洛谷 P2774 方格取数问题【最小割】

    因为都是正整数,所以当然取得越多越好.先把所有点权加起来,黑白染色后,s向所有黑点连流量为点权的边,所有白点向t连流量为点权的边,然后黑点向相邻的四个白点连流量为inf的边,表示不可割,这样一来,对于 ...

  5. [洛谷P2774]方格取数问题

    题目大意:给你一个$n\times m$的方格,要求你从中选择一些数,其中没有相邻两个数,使得最后和最大 题解:网络流,最小割,发现相邻的两个点不可以同时选择,进行黑白染色,原点向黑点连一条容量为点权 ...

  6. 洛谷 [P2774] 方格取数问题

    二分图最大点权独立集 通过题目描述我们可以很明显的看出要通过二分图建模,二分图求最大独立点集很容易,就是建立二分图求n-最小割,然而这里加入了权值,而且权值是在点上的,那么我们对于每个点连一条到源点或 ...

  7. 棋盘DP三连——洛谷 P1004 方格取数 &&洛谷 P1006 传纸条 &&Codevs 2853 方格游戏

    P1004 方格取数 题目描述 设有N $\times N$N×N的方格图(N $\le 9$)(N≤9),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字00.如下图所示(见样例): A ...

  8. 洛谷 P1004 方格取数 题解

    P1004 方格取数 题目描述 设有 \(N \times N\) 的方格图 \((N \le 9)\),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字\(0\).如下图所示(见样例): ...

  9. HDU 1569 方格取数(2) (最小割)

    方格取数(2) Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Su ...

随机推荐

  1. selenium 对浏览器的操控 java

    driver.navigate().back();     后退 driver.navigate().forward();   前进 driver.navigate().refresh();    刷 ...

  2. MSComm 串口

    MSComm 串口 http://www.docin.com/p-761416611.html http://blog.sina.com.cn/s/blog_50cfd0fc0102v27p.html

  3. wordpress 学习笔记

    (1) __()函数 function __( $text, $domain = 'default' ) { return translate( $text, $domain ); } 返回一个字符串 ...

  4. zookpeer的安装与配置

    zookpeer集群搭建: 集群搭建过程简介: 这里准3台服务器做zk(zookpeer下面简称zk)集群搭建: zk集群由一个leader和两个follower组成,对外端口默认为2181端口,关于 ...

  5. java实现 数组中两个元素相加等于指定数的所有组合

      package com.algorithm.hash; public class alg1 { public static void main(String argv[]) { int[] arr ...

  6. Spring总结二:IOC(控制反转)xml方式

    1,简介: IoC :Inverse of control 控制反转 ,思想就是在项目中引入一个工厂容器,对项目中接口依赖对象的创建,实现项目中对于依赖对象解耦合. 将程序中对象的创建权以及对象的整个 ...

  7. 深入剖析SolrCloud(四)

    作者:洞庭散人 出处:http://phinecos.cnblogs.com/ 本博客遵从Creative Commons Attribution 3.0 License,若用于非商业目的,您可以自由 ...

  8. resolve或reject之后还需要return吗

    答案: 需要 今日碰到一个问题, 是我的同事发现的,如果不说的话可能一直没有注意到 这个代码 在reject 后还会执行, 但是谁也没有注意到, 但是不会报错, 因为当一个promise是resolv ...

  9. AntD01 Angular2整合AntD、Angular2整合Material、利用Angular2,AntD,Material联合打造后台管理系统 ???

    待更新... 2018-5-21 13:53:52 1 环境说明 2 搭建Angular项目 详情参见 -> 点击前往 辅助技能 -> 点击前往 3 创建共享模块 ng g m share ...

  10. C++之shared_ptr总结

    转自 http://blog.csdn.net/u013696062/article/details/39665247 Share_ptr也是一种智能指针.类比于auto_ptr学习.所以推荐先学习a ...