一、求解模线性方程

由ax=b(mod n)

可知ax = ny + b

就相当于ax + ny = b

由扩展欧几里得算法可知有解条件为gcd(a, n)整除d

可以直接套用扩展欧几里得算法

最终由d个不同解时在模n下有d个不同的数字

二、中国剩余定理

证明可看:https://www.cnblogs.com/MashiroSky/p/5918158.html

ll extgcd(ll a, ll b, ll& x, ll& y)
//求解ax+by=gcd(a, b)
//返回值为gcd(a, b)
{
ll d = a;
if(b)
{
d = extgcd(b, a % b, y, x);
y -= (a / b) * x;
}
else x = , y = ;
return d;
}
ll solve(ll a[], ll m[], int n)//a数组是余数,m数组是两两互质的数字
{
ll M = , ans = ;
for(int i = ; i < n; i++)M *= m[i];
//cout<<M<<endl;
for(int i = ; i < n; i++)
{
ll mi = M / m[i], x, y;
extgcd(mi, m[i], x, y);
//求出mi模上m[i]的逆元x mi * x + m[i] * y = gcd(mi, m[i]) = 1(两两互质)
ans = ans + ((a[i] % M) * (mi % M) % M) * (x % M) % M;
ans = (ans % M + M) % M;
}
return ans;
}

三、中国剩余定理扩展---求解一般的模线性方程组

  普通的中国剩余定理要求所有的互素,那么如果不互素呢,怎么求解同余方程组?

  这种情况就采用两两合并的思想,假设要合并如下两个方程:

  那么得到:

  我们需要求出一个最小的xx使它满足:

在代码中,每次求出m0 * x + m[i] * y = a[i] - a0的解x的时候,对x模上m[i],这是为了保证x绝对值较小,防止之后的乘法溢出,

x的通解就是x + k * m[i] / gcd(m0, m[i]),此处模上m[i] / gcd(m0, m[i])更好

 ll extgcd(ll a, ll b, ll& x, ll& y)
//求解ax+by=gcd(a, b)
//返回值为gcd(a, b)
{
ll d = a;
if(b)
{
d = extgcd(b, a % b, y, x);
y -= (a / b) * x;
}
else x = , y = ;
return d;
}
ll solve(ll a[], ll m[], int n)//a数组是余数,m数组是除数
{
ll m0 = m[], a0 = a[];
for(int i = ; i < n; i++)
{
ll x, y;
ll g = extgcd(m0, m[i], x, y);//求出m0 * x + m[i] * y = gcd(x, y)
if((a[i] - a0) % g)return -;
x = x * (a[i] - a0) / g % m[i];
//求出m0 * x + m[i] * y = a[i] - a0的解x
//此处模上m[i]是为了取绝对值最小的一个x,因为x的通解就是x+k*m[i]
ll K = x * m0 + a0; //代回原式,求出最大的K
m0 = m0 / g * m[i]; //m0更新为m0和m[i]的lcm
a0 = K; //a0更新为K
a0 = ((a0 % m0) + m0) % m0;
}
return a0;
}

模线性方程&&中国剩余定理及拓展的更多相关文章

  1. 中国剩余定理及其拓展 CRT&EXGCD

    中国剩余定理,又叫孙子定理. 作为一个梗广为流传.其实它的学名叫中国单身狗定理. 中国剩余定理 中国剩余定理是来干什么用的呢? 其实就是用来解同余方程组的.那么什么又是同余方程组呢. 顾名思义就是n个 ...

  2. BZOJ-1951 古代猪文 (组合数取模Lucas+中国剩余定理+拓展欧几里得+快速幂)

    数论神题了吧算是 1951: [Sdoi2010]古代猪文 Time Limit: 1 Sec Memory Limit: 64 MB Submit: 1573 Solved: 650 [Submit ...

  3. E - Two Arithmetic Progressions(CodeForces - 710D)(拓展中国剩余定理)

    You are given two arithmetic progressions: a1k + b1 and a2l + b2. Find the number of integers x such ...

  4. 礼物(中国剩余定理+拓展gcd求逆元+分治=拓展Lucus)

    礼物 题意: 求\[C(n,m)\ \%\ p\] \(n,m,p\le 10^9\),且若\(p=\prod_{i=1}^{k}{p_i}^{c_i}\),则\(\forall i\in [1..k ...

  5. 拓展中国剩余定理(exCRT)摘要

    清除一个误区 虽然中国剩余定理和拓展中国剩余定理只差两个字,但他俩的解法相差十万八千里,所以会不会CRT无所谓 用途 求类似$$\begin{cases}x \equiv b_{1}\pmod{a_{ ...

  6. 中国剩余定理(CRT)及其拓展(ExCRT)

    中国剩余定理 CRT 推导 给定\(n\)个同余方程 \[ \left\{ \begin{aligned} x &\equiv a_1 \pmod{m_1} \\ x &\equiv ...

  7. [BZOJ 3129] [Sdoi2013] 方程 【容斥+组合数取模+中国剩余定理】

    题目链接:BZOJ - 3129 题目分析 使用隔板法的思想,如果没有任何限制条件,那么方案数就是 C(m - 1, n - 1). 如果有一个限制条件是 xi >= Ai ,那么我们就可以将 ...

  8. 拓展中国剩余定理(ex_crt)

    一般来讲,crt(中国剩余定理)比较常见,而ex_crt(拓展中国剩余定理)不是很常用 但是noi 2018偏偏考了这么个诡异的东西... 所以这里写一个ex_crt模板 模型: 求一个x满足上述方程 ...

  9. POJ.1006 Biorhythms (拓展欧几里得+中国剩余定理)

    POJ.1006 Biorhythms (拓展欧几里得+中国剩余定理) 题意分析 不妨设日期为x,根据题意可以列出日期上的方程: 化简可得: 根据中国剩余定理求解即可. 代码总览 #include & ...

随机推荐

  1. 《阿里如何实现秒级百万TPS?搜索离线大数据平台大数据平台架构解读》读后感

    在使用淘宝时发现搜索框很神奇,它可以将将我们想要的商品全部查询出来,但是我们并感觉不到数据库查询的过程,速度很快.通过阅读这篇文章让我知道了搜索框背后包含着很多技术,对我以后的学习可能很有借鉴. 平时 ...

  2. query的参数解析

    SQLiteDatabase dbInstance;Cursor cursor = dbInstance.query(String table,String []Columns, String sel ...

  3. pat00-自测4. Have Fun with Numbers (20)

    00-自测4. Have Fun with Numbers (20) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作者 CHEN, Yu ...

  4. vue-cli 3.x安装配置步骤详细说明

      一.vue-cli 3.x简单介绍 Vue CLI 是一个基于 Vue.js 进行快速开发的完整系统:是一个类似于 create-react-app 的可以用例命令行快速配置和生成一个 vue 项 ...

  5. SpringBoot | 第二十九章:Dubbo的集成和使用

    前言 今年年初时,阿里巴巴开源的高性能服务框架dubbo又开始了新一轮的更新,还加入了Apache孵化器.原先项目使用了spring cloud之后,已经比较少用dubbo.目前又抽调回原来的行业应用 ...

  6. C++程序设计基础(5)sizeof的使用

    1.知识点 (1)sizeof是一个单目运算发,而不是一个函数,其用于获取操作数所占内存空间的字节数. (2)sizeof的操作数可以使类型名,也可以是表达式,如果是类型名则直接获得该类型所占字节数, ...

  7. (三)css之浮动&定位

    众所周知,一个页面可能包含多个div,如何对这些div进行排列,以便具有较好的显示效果呢? css提供了浮动和定位两个属性进行div的排列,下面主要针对浮动和定位进行详细地阐述. (一)何为浮动? 浮 ...

  8. mysql无法连接Can't create a new thread (errno 11)

    问题描述: 今天本地navicat连接服务器mysql出错 ,提示ERROR 1135: Can't create a new thread (errno 11); if you are not ou ...

  9. Android-视图绘制

    http://blog.csdn.net/guolin_blog/article/details/16330267 任何一个视图都不可能凭空突然出现在屏幕上,它们都是要经过非常科学的绘制流程后才能显示 ...

  10. SVN服务器在Ubuntu16.04下搭建多版本库详细教程

    1  介绍  Subversion是一个自由,开源的版本控制系统,这个版本库就像一个普通的文件服务器,不同的是,它可以记录每一次文件和目录的修改情况.这样就可 以很方面恢复到以前的版本,并可以查看数据 ...