nyoj 349&Poj 1094 Sorting It All Out——————【拓扑应用】
Sorting It All Out
- 描述
-
An ascending sorted sequence of distinct values is one in which some form of a less-than operator is used to order the elements from smallest to largest. For example, the sorted sequence A, B, C, D implies that A < B, B < C and C < D. in this problem, we will give you a set of relations of the form A < B and ask you to determine whether a sorted order has been specified or not.
- 输入
- Input consists of multiple problem instances. Each instance starts with a line containing two positive integers n and m. the first value indicated the number of objects to sort, where 2 <= n <= 26. The objects to be sorted will be the first n characters of the uppercase alphabet. The second value m indicates the number of relations of the form A < B which will be given in this problem instance. Next will be m lines, each containing one such relation consisting of three characters: an uppercase letter, the character "<" and a second uppercase letter. No letter will be outside the range of the first n letters of the alphabet. Values of n = m = 0 indicate end of input.
- 输出
- For each problem instance, output consists of one line. This line should be one of the following three:
Sorted sequence determined after xxx relations: yyy...y.
Sorted sequence cannot be determined.
Inconsistency found after xxx relations.where xxx is the number of relations processed at the time either a sorted sequence is determined or an inconsistency is found, whichever comes first, and yyy...y is the sorted, ascending sequence.
- 样例输入
-
4 6
A<B
A<C
B<C
C<D
B<D
A<B
3 2
A<B
B<A
26 1
A<Z
0 0 - 样例输出
-
Sorted sequence determined after 4 relations: ABCD.
Inconsistency found after 2 relations.
Sorted sequence cannot be determined. 题目大意:给你n个点,给你m条边代表大小关系。问你在第几条边加入后有矛盾(有环)或能确定关系,或者不能确定关系。
解题思路:首先每次加入一条边,就用floyd传递闭包,之后再判断是否形成环。如果没有环,就判断是否能确定唯一大小关系,这里有一个重要的判断条件即如果所有的结点的度等于n-1,则拓扑排序记录路径。#include<bits/stdc++.h>
using namespace std;
int Map[50][50],indegree[50],outdegree[50];
char S_ord[50];
bool floyd(int n){
for(int k=0;k<n;k++){ //传递闭包
for(int i=0;i<n;i++){
for(int j=0;j<n;j++){
if(Map[i][k]&&Map[k][j])
Map[i][j]=1;
}
}
}
for(int i=0;i<n;i++) //判断是否形成环
if(Map[i][i])
return 1;
return 0;
}
bool calcu_is_ord(int n){ //计算目前是否有序
memset(indegree,0,sizeof(indegree));
memset(outdegree,0,sizeof(outdegree));
for(int i=0;i<n;i++){
for(int j=0;j<n;j++){
if(Map[i][j]){
indegree[j]++;
outdegree[i]++;
}
}
}
for(int i=0;i<n;i++){
if(indegree[i]+outdegree[i]!=n-1){
/*如果所有结点都满足入度加出度等于结点总数减一,说明已经有序。因为如果有序,必然
会有入度为0~n-1,相应的出度为n-1~0。所以只要所有的结点度都为n-1,则说明已经有序。
*/
return 0;
}
}
return 1;
}
void topo_sort(int n){ //拓扑排序求大小顺序
int que_[50],vis[50],top=0,cnt=0,u;
for(int i=0;i<n;i++){
if(indegree[i]==0){
que_[++top]=i;
}
}
memset(vis,0,sizeof(vis));
while(top){
u=que_[top--];
vis[u]=1;
S_ord[cnt++]=u+'A';
for(int i=0;i<n;i++){
if(!vis[i]&&Map[u][i]){
indegree[i]--;
}
if(!vis[i]&&indegree[i]==0){
que_[++top]=i;
}
}
}
S_ord[cnt++]='\0';
}
int main(){
int n,m;
char str[10];
while(scanf("%d%d",&n,&m)!=EOF&&(n+m)){
memset(Map,0,sizeof(Map));
int flag_cir=0,flag_ord=0; //记录在第几组关系输入时形成环或有序
for(int i=1;i<=m;i++){
scanf("%s",str);
Map[str[0]-'A'][str[2]-'A']=1;
if(flag_cir||flag_ord)
continue;
if(floyd(n)){ flag_cir=i;continue;}
else if(calcu_is_ord(n)){topo_sort(n);flag_ord=i;continue;}
}
if(flag_cir)
printf("Inconsistency found after %d relations.\n",flag_cir);
else if(flag_ord){
printf("Sorted sequence determined after %d relations: %s.\n",flag_ord,S_ord);
}else{
printf("Sorted sequence cannot be determined.\n");
}
}
return 0;
}
nyoj 349&Poj 1094 Sorting It All Out——————【拓扑应用】的更多相关文章
- ACM: poj 1094 Sorting It All Out - 拓扑排序
poj 1094 Sorting It All Out Time Limit:1000MS Memory Limit:10000KB 64bit IO Format:%lld & ...
- poj 1094 Sorting It All Out (拓扑排序)
http://poj.org/problem?id=1094 Sorting It All Out Time Limit: 1000MS Memory Limit: 10000K Total Su ...
- nyoj 349 (poj 1094) (拓扑排序)
Sorting It All Out 时间限制:3000 ms | 内存限制:65535 KB 难度:3 描述 An ascending sorted sequence of distinct ...
- POJ 1094 Sorting It All Out 拓扑排序 难度:0
http://poj.org/problem?id=1094 #include <cstdio> #include <cstring> #include <vector& ...
- [ACM_模拟] POJ 1094 Sorting It All Out (拓扑排序+Floyd算法 判断关系是否矛盾或统一)
Description An ascending sorted sequence of distinct values is one in which some form of a less-than ...
- POJ 1094 Sorting It All Out (拓扑排序) - from lanshui_Yang
Description An ascending sorted sequence of distinct values is one in which some form of a less-than ...
- poj 1094 Sorting It All Out_拓扑排序
题意:是否唯一确定顺序,根据情况输出 #include <iostream> #include<cstdio> #include<cstring> #include ...
- poj 1094 Sorting It All Out(nyoj 349)
点击打开链接 Sorting It All Out Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 24544 Accep ...
- poj 1094 Sorting It All Out(图论)
http://poj.org/problem?id=1094 这一题,看了个大牛的解题报告,思路变得非常的清晰: 1,先利用floyd_warshall算法求出图的传递闭包 2,再判断是不是存在唯一的 ...
随机推荐
- c++实现多叉树树形显示(适合家谱的显示)
多叉树(左兄弟右孩子二叉树)的树形显示 核心代码 void positionadd(Multiway_tree*root, int n) { if (!root)return; Multiway_tr ...
- 实现求解线性方程(矩阵、高斯消去法)------c++程序设计原理与实践(进阶篇)
步骤: 其中A是一个n*n的系数方阵 向量x和b分别是未知数和常量向量: 这个系统可能有0个.1个或者无穷多个解,这取决于系数矩阵A和向量b.求解线性系统的方法有很多,这里使用一种经典的方法——高斯消 ...
- django中ImageField模块使用
https://blog.csdn.net/meylovezn/article/details/47124923
- kali linux之拒绝服务
Dos不是DOS(利用程序漏洞或一对一资源耗尽的denial of service拒绝服务) DDoS分布式拒绝服务(多对一的攻击汇聚资源能力,重点在于量大,属于资源耗尽型) 历史 以前:欠缺技术能力 ...
- kali linux之手动漏洞挖掘三(sql注入)
服务器端程序将用户输入作为参数作为查询条件,直接拼写sql语句,并将结果返回给客户端浏览器 如判断登录 select * from users where user='uname' and passw ...
- Python爬虫:带参url的拼接
如果连接直接这样写,看上去很直观,不过参数替换不是很方便,而且看着不舒服 https://www.mysite.com/?sortField=%E4%BA%BA%E5%B7%A5%E6%99%BA%E ...
- LNMP之Php的安装配置
此配置的编译参数是: ./configure --prefix=/opt/php7.2.3 --with-openssl --with-zlib --with-curl --enable-ftp -- ...
- springboot集成巨杉数据库
springboot倾向于约定优于配置,所以大大简化了搭建项目的流程,包括各种数据源的配置,接下来就和大家分享下最近用到的巨杉数据源连接池的配置 1.现在配置文件中定义巨杉连接池的各种连接信息,至于每 ...
- css文章
前端HTML-CSS规范:https://yq.aliyun.com/articles/51487 jQuery+d3绘制流程图:https://blog.csdn.net/zitong_ccnu/a ...
- tomcat更改web文件路径
由于代码太长,记不住!只能自己做个小笔记了!! <Context path="/" docBase="/opt/appl/merch.bak" debug ...