python 学习笔记 多进程
要让python程序实现多进程,我们先了解操作系统的相关知识
Unix/Linux操作系统提供了一个fork()系统调用,他非常特殊,普通的函数调用,调用一次,返回一次,但是fork调用一次,
返回两次,因为操作系统自动把当前进程称为父进程复制了一份,然后,分别在父进程和子进程返回。
子进程永远返回0,而父进程返回子进程的ID.这样做的理由是,一个父进程可以fork出很多子进程,所以父进程要记下来
子进程的ID,而子进程只需要调用getppid()就可以拿到父进程的id
Python的OS模块封装了常见的系统调用,其中就包括fork,可以在python程序中轻松创建子进程
import os
print('Process (%s) start...' % os.getpid())
# Only works on Unix/Linux/Mac:
pid = os.fork()
if pid == 0:
print('I am child process (%s) and my parent is %s.' % (os.getpid(), os.getppid()))
else:
print('I (%s) just created a child process (%s).' % (os.getpid(), pid))
有了fork调用,一个进程在接到新任务时就可以复制出一个子进程来处理新任务,常见的Apache服务器就是由父进程监听端口,每当有新的http请求时,就fork出子进程来处理新的http请求。
由于Windows没有fork调用,上面的代码在Windows上无法运行。由于Mac系统是基于BSD(Unix的一种)内核,所以,在Mac下运行是没有问题的,推荐大家用Mac学Python!
有了fork调用,一个进程在接到新任务时就可以复制出一个子进程来处理新任务,常见的Apache服务器就是由父进程监听端口,每当有新的http请求时,就fork出子进程来处理新的http请求。
multiprocessing
如果你打算编写多进程的服务程序,Unix/Linux无疑是正确的选择。由于Windows没有fork调用,难道在Windows上无法用Python编写多进程的程序?
由于Python是跨平台的,自然也应该提供一个跨平台的多进程支持。multiprocessing模块就是跨平台版本的多进程模块。
multiprocessing模块提供了一个Process类来代表一个进程对象,下面的例子演示了启动一个子进程并等待其结束:
from multiprocessing import Process
import os # 子进程要执行的代码
def run_proc(name):
print('Run child process %s (%s)...' % (name, os.getpid())) if __name__=='__main__':
print('Parent process %s.' % os.getpid())
p = Process(target=run_proc, args=('test',))
print('Child process will start.')
p.start()
p.join()
print('Child process end.')
创建子进程时,只需要传入一个执行函数和函数的参数,创建一个Process实例,用start()方法启动,这样创建进程比fork()还要简单。 join()方法可以等待子进程结束后再继续往下运行,通常用于进程间的同步。
Pool
如果要启动大量的子进程,可以用进程池的方式批量创建子进程:
from multiprocessing import Pool
import os, time, random def long_time_task(name):
print('Run task %s (%s)...' % (name, os.getpid()))
start = time.time()
time.sleep(random.random() * 3)
end = time.time()
print('Task %s runs %0.2f seconds.' % (name, (end - start))) if __name__=='__main__':
print('Parent process %s.' % os.getpid())
p = Pool(4)
for i in range(5):
p.apply_async(long_time_task, args=(i,))
print('Waiting for all subprocesses done...')
p.close()
p.join()
print('All subprocesses done.')
执行结果类似下面
Parent process 669.
Waiting for all subprocesses done...
Run task 0 (671)...
Run task 1 (672)...
Run task 2 (673)...
Run task 3 (674)...
Task 2 runs 0.14 seconds.
Run task 4 (673)...
Task 1 runs 0.27 seconds.
Task 3 runs 0.86 seconds.
Task 0 runs 1.41 seconds.
Task 4 runs 1.91 seconds.
All subprocesses done.
子进程
很多时候,子进程并不是自身,而是一个外部进程。我们创建了子进程后,还需要控制子进程的输入和输出。
subprocess模块可以让我们非常方便地启动一个子进程,然后控制其输入和输出。
下面的例子演示了如何在Python代码中运行命令nslookup www.python.org,这和命令行直接运行的效果是一样的:
进程间通信
Process之间肯定是需要通信的,操作系统提供了很多机制来实现进程间的通信。Python的multiprocessing模块包装了底层的机制,提供了Queue、Pipes等多种方式来交换数据。
我们以Queue为例,在父进程中创建两个子进程,一个往Queue里写数据,一个从Queue里读数据:
from multiprocessing import Process, Queue
import os, time, random # 写数据进程执行的代码:
def write(q):
print('Process to write: %s' % os.getpid())
for value in ['A', 'B', 'C']:
print('Put %s to queue...' % value)
q.put(value)
time.sleep(random.random()) # 读数据进程执行的代码:
def read(q):
print('Process to read: %s' % os.getpid())
while True:
value = q.get(True)
print('Get %s from queue.' % value) if __name__=='__main__':
# 父进程创建Queue,并传给各个子进程:
q = Queue()
pw = Process(target=write, args=(q,))
pr = Process(target=read, args=(q,))
# 启动子进程pw,写入:
pw.start()
# 启动子进程pr,读取:
pr.start()
# 等待pw结束:
pw.join()
# pr进程里是死循环,无法等待其结束,只能强行终止:
pr.terminate()
在Unix/Linux下,multiprocessing模块封装了fork()调用,使我们不需要关注fork()的细节。由于Windows没有fork调用,因此,multiprocessing需要“模拟”出fork的效果,父进程所有Python对象都必须通过pickle序列化再传到子进程去,所有,如果multiprocessing在Windows下调用失败了,要先考虑是不是pickle失败了。
python 学习笔记 多进程的更多相关文章
- Python 学习笔记 多进程 multiprocessing--转载
本文链接地址 http://quqiuzhu.com/2016/python-multiprocessing/ Python 解释器有一个全局解释器锁(PIL),导致每个 Python 进程中最多同时 ...
- python学习笔记-多进程
multiprocessing from multiprocessing import Process import time def f(name): time.sleep(2) print('he ...
- python学习笔记——多进程中的锁Lock
1 进程锁 python编程中,引入了对象互斥锁的概念,来保证共享数据操作的完整性. 每个对象都对应于一个可称为“互斥锁”的标记,这个标记用来保证在任一时刻,只能有一线程访问对象. 在python中我 ...
- python学习笔记——多进程中共享内存Value & Array
1 共享内存 基本特点: (1)共享内存是一种最为高效的进程间通信方式,进程可以直接读写内存,而不需要任何数据的拷贝. (2)为了在多个进程间交换信息,内核专门留出了一块内存区,可以由需要访问的进程将 ...
- python学习笔记—— 多进程中的 孤儿进程和僵尸进程
1 基本概述 1.1 孤儿进程和僵尸进程 父进程创建子进程后,较为理想状态是子进程结束,父进程回收子进程并释放子进程占有的资源:而实际上,父子进程是异步过程,两者谁先结束是无顺的,一般可以通过父进程调 ...
- python学习笔记——多进程二 进程的退出
1 进程的退出函数的基础语法 1.1 进程的退出函数 进程的退出含有有os._exit([status])和sys.exit([status])两种,从数据包来看,该退出模块仅在linux或者unix ...
- python学习笔记——多进程一 基础概念
1 进程 进程:程序的一次(从开始到结束)执行过程,属于一个动态过程.是系统进行资源分配和调度的基本单位. 程序:指的是一个文件,磁盘中可执行的代码.属于一个静态文件 注:进程运行时需要把程序加载如内 ...
- Python学习笔记进阶篇——总览
Python学习笔记——进阶篇[第八周]———进程.线程.协程篇(Socket编程进阶&多线程.多进程) Python学习笔记——进阶篇[第八周]———进程.线程.协程篇(异常处理) Pyth ...
- python学习笔记整理——字典
python学习笔记整理 数据结构--字典 无序的 {键:值} 对集合 用于查询的方法 len(d) Return the number of items in the dictionary d. 返 ...
随机推荐
- CSS3 :animation 动画
CSS3动画分为二部份: 1.定义动画行为: 使用@keyframes定义动画行为,有两种方式: 方式一:仅定义动画起始样式,与动画结束样式 @keyframes (动画行为名称) { from {b ...
- hdu 1556 Color the ball (区间更新 求某点值)
Problem Description N个气球排成一排,从左到右依次编号为1,2,3....N.每次给定2个整数a b(a <= b),lele便为骑上他的“小飞鸽"牌电动车从气球a ...
- 使用HashOperations操作redis
方法 c参数 s说明 Long delete(H key, Object... hashKeys); H key:集合key Object... hashKeys:key对应hashkey 删除ma ...
- SQL Server 性能调优 之执行计划(Execution Plan)调优
SQL Server 存在三种 Join 策略:Hash Join,Merge Join,Nested Loop Join. Hash Join:用来处理没有排过序/没有索引的数据,它在内存中把 Jo ...
- CSS设计指南之伪类
伪类这个叫法源自它们与类相似,但实际上并没有类会附加到标记中的标签上.伪类分两种. UI伪类会在HTML元素处于某个状态时(比如鼠标指针位于链接上),为该元素应用CSS样式. 结构化伪类会在标记中存在 ...
- thinkphp3.2 常用单字母函数
U函数:用来生成url U('地址表达式',['参数'],['伪静态后缀'],['显示域名'] 例如: U('Blog/read?id=1') // 生成Blog控制器的read操作 并且id为1的U ...
- JS frame 跨域 传值
1.在index.html 页面定义一个 函数用于接收 子页面的调用. <iframe id="common_iframe" class="common_conte ...
- Eclipse的优化方案
General > Startup and Shutdown : 移除所有在启动时加载的插件. General > Editors > Text Editors > Spell ...
- 【bzoj1018】[SHOI2008]堵塞的交通traffic 线段树区间合并+STL-set
题目描述 给出一张2*n的网格图,初始每条边都是不连通的.多次改变一条边的连通性或询问两个点是否连通. 输入 第一行只有一个整数C,表示网格的列数.接下来若干行,每行为一条交通信息,以单独的一行“Ex ...
- 【bzoj4516】[Sdoi2016]生成魔咒 后缀数组+倍增RMQ+STL-set
题目描述 魔咒串由许多魔咒字符组成,魔咒字符可以用数字表示.例如可以将魔咒字符 1.2 拼凑起来形成一个魔咒串 [1,2].一个魔咒串 S 的非空字串被称为魔咒串 S 的生成魔咒. 例如 S=[1,2 ...