hihoCoder#1067(离线算法求LCA)
描述
上上回说到,小Hi和小Ho用非常拙劣——或者说粗糙的手段山寨出了一个神奇的网站,这个网站可以计算出某两个人的所有共同祖先中辈分最低的一个是谁。远在美国的他们利用了一些奇妙的技术获得了国内许多人的相关信息,并且搭建了一个小小的网站来应付来自四面八方的请求。
但正如我们所能想象到的……这样一个简单的算法并不能支撑住非常大的访问量,所以摆在小Hi和小Ho面前的无非两种选择:
其一是购买更为昂贵的服务器,通过提高计算机性能的方式来满足需求——但小Hi和小Ho并没有那么多的钱;其二则是改进他们的算法,通过提高计算机性能的利用率来满足需求——这个主意似乎听起来更加靠谱。
于是为了他们第一个在线产品的顺利运作,小Hi决定对小Ho进行紧急训练——好好的修改一番他们的算法。
而为了更好的向小Ho讲述这个问题,小Hi将这个问题抽象成了这个样子:假设现小Ho现在知道了N对父子关系——父亲和儿子的名字,并且这N对父子关系中涉及的所有人都拥有一个共同的祖先(这个祖先出现在这N对父子关系中),他需要对于小Hi的若干次提问——每次提问为两个人的名字(这两个人的名字在之前的父子关系中出现过),告诉小Hi这两个人的所有共同祖先中辈分最低的一个是谁?
输入
每个测试点(输入文件)有且仅有一组测试数据。
每组测试数据的第1行为一个整数N,意义如前文所述。
每组测试数据的第2~N+1行,每行分别描述一对父子关系,其中第i+1行为两个由大小写字母组成的字符串Father_i, Son_i,分别表示父亲的名字和儿子的名字。
每组测试数据的第N+2行为一个整数M,表示小Hi总共询问的次数。
每组测试数据的第N+3~N+M+2行,每行分别描述一个询问,其中第N+i+2行为两个由大小写字母组成的字符串Name1_i, Name2_i,分别表示小Hi询问中的两个名字。
对于100%的数据,满足N<=10^5,M<=10^5, 且数据中所有涉及的人物中不存在两个名字相同的人(即姓名唯一的确定了一个人),所有询问中出现过的名字均在之前所描述的N对父子关系中出现过,第一个出现的名字所确定的人是其他所有人的公共祖先。
输出
对于每组测试数据,对于每个小Hi的询问,按照在输入中出现的顺序,各输出一行,表示查询的结果:他们的所有共同祖先中辈分最低的一个人的名字。
- 样例输入
-
4
Adam Sam
Sam Joey
Sam Micheal
Adam Kevin
3
Sam Sam
Adam Sam
Micheal Kevin - 样例输出
-
Sam
Adam
Adam 思路:利用并查集保证求(u,v)的LCA时,若u已遍历过,那么并查集的root(u)为LCA.#include <iostream>
#include <string>
#include <vector>
#include <map>
using namespace std;
const int MAXN=;
struct Node{
int to,id;
Node(){}
Node(int to,int id)
{
this->to=to;
this->id=id;
}
};
int n,m,tot,vis[MAXN],par[MAXN];
int deg[MAXN];
string ancestor[MAXN];
vector<int> arc[MAXN];
map<string,int> mp;
map<int,string> rmp;
vector<Node> que[MAXN];
void prep()
{
for(int i=;i<MAXN;i++)
{
vis[i]=;
par[i]=i;
}
}
int fnd(int x)
{
if(par[x]==x)
{
return x;
}
return par[x]=fnd(par[x]);
}
void unite(int x,int y)
{
int a=fnd(x);
int b=fnd(y);
if(a!=b) par[b]=a;
}
int getID(string name)
{
if(mp.find(name)==mp.end())
{
tot++;
mp[name]=tot;
rmp[tot]=name;
}
return mp[name];
}
string getName(int ID)
{
return rmp[ID];
}
void tarjan(int u)
{
vis[u]=;
for(int i=,size=que[u].size();i<size;i++)
{
Node now=que[u][i];
if(vis[now.to])
{
int root=fnd(now.to);
ancestor[now.id]=rmp[root];
}
}
for(int i=,size=arc[u].size();i<size;i++)
{
int to=arc[u][i];
if(!vis[to])
{
tarjan(to);
unite(u,to);
}
}
}
int main()
{
prep();
cin>>n;
for(int i=;i<n;i++)
{
string fa,son;
cin>>fa>>son;
int IDfa=getID(fa);
int IDson=getID(son);
deg[IDson]++;
arc[IDfa].push_back(IDson);
}
cin>>m;
for(int i=;i<m;i++)
{
string son1,son2;
cin>>son1>>son2;
int IDson1=getID(son1);
int IDson2=getID(son2);
que[IDson1].push_back(Node(IDson2,i));
que[IDson2].push_back(Node(IDson1,i));
}
for(int i=;i<MAXN;i++)
{
if(deg[i]==)
{
tarjan(i);
break;
}
}
for(int i=;i<m;i++)
{
cout<<ancestor[i]<<endl;
} return ;
}
hihoCoder#1067(离线算法求LCA)的更多相关文章
- tarjan算法求LCA
tarjan算法求LCA LCA(Least Common Ancestors)的意思是最近公共祖先,即在一棵树中,找出两节点最近的公共祖先. 这里我们使用tarjan算法离线算法解决这个问题. 离线 ...
- Tarjan 算法求 LCA / Tarjan 算法求强连通分量
[时光蒸汽喵带你做专题]最近公共祖先 LCA (Lowest Common Ancestors)_哔哩哔哩 (゜-゜)つロ 干杯~-bilibili tarjan LCA - YouTube Tarj ...
- SPOJ COT2 Count on a tree II (树上莫队,倍增算法求LCA)
题意:给一个树图,每个点的点权(比如颜色编号),m个询问,每个询问是一个区间[a,b],图中两点之间唯一路径上有多少个不同点权(即多少种颜色).n<40000,m<100000. 思路:无 ...
- POJ 1986 Distance Queries(Tarjan离线法求LCA)
Distance Queries Time Limit: 2000MS Memory Limit: 30000K Total Submissions: 12846 Accepted: 4552 ...
- 【洛谷 p3379】模板-最近公共祖先(图论--倍增算法求LCA)
题目:给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 解法:倍增. 1 #include<cstdio> 2 #include<cstdlib> 3 #include ...
- LCA(最近公共祖先)--tarjan离线算法 hdu 2586
HDU 2586 How far away ? Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/ ...
- LCA问题的ST,tarjan离线算法解法
一 ST算法与LCA 介绍 第一次算法笔记这样的东西,以前学算法只是笔上画画写写,理解了下,刷几道题,其实都没深入理解,以后遇到新的算法要把自己的理解想法写下来,方便日后回顾嘛>=< R ...
- LOJ#137. 最小瓶颈路 加强版(Kruskal重构树 rmq求LCA)
题意 三倍经验哇咔咔 #137. 最小瓶颈路 加强版 #6021. 「from CommonAnts」寻找 LCR #136. 最小瓶颈路 Sol 首先可以证明,两点之间边权最大值最小的路径一定是在最 ...
- POJ 1986:Distance Queries(倍增求LCA)
http://poj.org/problem?id=1986 题意:给出一棵n个点m条边的树,还有q个询问,求树上两点的距离. 思路:这次学了一下倍增算法求LCA.模板. dp[i][j]代表第i个点 ...
随机推荐
- scope的继承
本文转载自: http://www.tuicool.com/articles/63iEref angular中scope的继承与js的原型继承有密切的联系,首先回顾一下js的继承: function ...
- numpy模块之创建矩阵、矩阵运算
本文参考给妹子讲python https://zhuanlan.zhihu.com/p/34673397 NumPy是Numerical Python的简写,是高性能科学计算和数据分析的基础包,他是 ...
- 1.mysql导论
虽然之前用过mysql一年多,但大多只是会用,深入了解的不多.所以想利用平时时间 系统的总结总结. 一.什么是数据库:(数据库软件) 1).什么是数据库(软件):数据库(DB:DataBase ...
- SolrCloud 5.5.5 + Zookeeper + HDFS使用
安装sol r 三个节点192.168.1.231,192.168.1.234,192.168.1.235 下载安装包solr.tar.gz 解压 tar -zxvf solr.tar.gz 配置ZK ...
- Tomcat学习之Wrapper
Tomcat学习之Wrapper 分类: WEB服务器2012-08-30 22:16 1547人阅读 评论(0) 收藏 举报 tomcatservletwrapperservletslistexce ...
- Spring初学之spring的事务管理xml
所有的java类都是用的上一篇文章:Spring初学之spring的事务管理 不同的是,这时xml配置事务,所以就要把java类中的那些关于spring的注解都删掉,然后在xml中配置,Applica ...
- Flume-NG启动过程源码分析(二)(原创)
在上一节中讲解了——Flume-NG启动过程源码分析(一)(原创) 本节分析配置文件的解析,即PollingPropertiesFileConfigurationProvider.FileWatch ...
- iframe标签的子父页面调用函数和属性
在使用iframe标签时,总想通过子页面调用父页面的一些方法和属性.今天终于发现了. 1在父页面写一个函数 //让子页面来调用此方法,控制导航栏 function childfunc(){ alert ...
- JMeter ——Test fragment
fragment 为片段,可以是一个不完整的用例.比如你可以把一个http请求保存为fragment,如果不这样做的话,你是必须先要添加一个测试计划-线程组-http请求的.你可以把某步骤一系列的请求 ...
- C++(零)— 提高程序运行效率
1.尽量减少值传递,多用引用来传递参数. 2.++i和i++引申出的效率问题,使用++i. 3.避免过大的循环,由计算机的硬件决定的. 4.局部变量VS静态变量,尽量使用局部变量. 5.减少除法运算的 ...