[SCOI2010]序列操作 线段树
题解:
在考场上打的这道题,出人意料的很快就打完了?!
直接用线段树,维护几个东西:
1,lazy标记 : 表示区间赋值
2,mark标记:表示区间翻转
3,l1:前缀最长连续的1的子段长度
4,l0:前缀最长连续的0的子段长度
5,m0:区间内最长的全为0的子段的长度
6,r0:后缀最长连续的0的子段长度
7,r1:后缀最长连续的1的子段长度
8,m1:区间内最长的全为1的子段的长度
9,sum :区间和
维护起来比较繁琐,细节较多,但是都不难,是可以自己想出来的。
这里提一个可以忽略标记处理顺序的小技巧:
因为lazy标记是可以覆盖mark标记的,因此一个节点在得到lazy标记时,清空mark标记。
因为mark标记可以看做是直接对lazy标记进行翻转,因此如果一个节点已经有lazy标记,那么在打上mark标记时,可以选择不得到mark标记,而是直接对lazy标记进行修改。
因此不论是什么情况,mark标记和lazy标记都不会同时存在,也就不会有处理的先后顺序问题了。
#include<bits/stdc++.h>
using namespace std;
#define R register int
#define AC 101000
#define ac 800000
#define LL long long
int n, m, ans;
int s[AC];
int sum[ac], lazy[ac], l1[ac], r1[ac], l0[ac], r0[ac], m1[ac], m0[ac], l[ac], r[ac];
bool mark[ac]; inline int read()
{
int x = ;char c = getchar();
while(c > '' || c < '') c = getchar();
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x;
} inline void upmin(int &a, int b)
{
if(b < a) a = b;
} inline void upmax(int &a, int b)
{
if(b > a) a = b;
} inline int Max(int a, int b)
{
if(a > b) return a;
else return b;
} void update(int x)//更新信息
{
int ll = x * , rr = x * + ;
m1[x] = Max(m1[ll], m1[rr]);
upmax(m1[x], r1[ll] + l1[rr]);
m0[x] = Max(m0[ll], m0[rr]);
upmax(m0[x], r0[ll] + l0[rr]);
if(sum[rr] == r[rr] - l[rr] + ) r1[x] = sum[rr] + r1[ll];
else r1[x] = r1[rr];
if(!sum[rr]) r0[x] = r[rr] - l[rr] + + r0[ll];
else r0[x] = r0[rr];
if(sum[ll] == r[ll] - l[ll] + ) l1[x] = sum[ll] + l1[rr];
else l1[x] = l1[ll];
if(!sum[ll]) l0[x] = r[ll] - l[ll] + + l0[rr];
else l0[x] = l0[ll];
sum[x] = sum[ll] + sum[rr];
} void getlazy(int x, int go)
{
if(go == )
{
lazy[x] = , sum[x] = ;
l1[x] = r1[x] = m1[x] = ;
l0[x] = r0[x] = m0[x] = r[x] - l[x] + ;
}
else if(go == )
{
lazy[x] = ;
sum[x] = r[x] - l[x] + ;
l1[x] = r1[x] = m1[x] = sum[x];
l0[x] = r0[x] = m0[x] = ;
}
mark[x] = ;//区间赋值可以抵消区间反转
} void getmark(int x)
{
mark[x] ^= ;//翻转翻转标记
if(lazy[x]) getlazy(x, lazy[x] % + );
else
{
sum[x] = r[x] - l[x] + - sum[x];
swap(l1[x], l0[x]), swap(r1[x], r0[x]);
swap(m1[x], m0[x]);
}
} void pushdown(int x)//下传标记
{
if(lazy[x])
{
int ll = x * , rr = ll + ;
if(lazy[x] == )//change to 0
getlazy(ll, ), getlazy(rr, );
else//change to 1
getlazy(ll, ), getlazy(rr, );
lazy[x] = ;
}
if(mark[x])
{
int ll = x * , rr = ll + ;
getmark(ll), getmark(rr);
mark[x] = ;
}
} void change(int x, int ll, int rr, int go)//区间修改
{
pushdown(x);
if(l[x] == ll && r[x] == rr)
{
if(go <= ) getlazy(x, go);
else getmark(x);
return;
}
int mid = (l[x] + r[x]) >> ;
if(rr <= mid) change(x * , ll, rr, go);
else if(ll > mid) change(x * + , ll, rr, go);
else
{
change(x * , ll, mid, go);
change(x * + , mid + , rr, go);
}
update(x);
} void getsum(int x, int ll, int rr)
{
pushdown(x);
if(l[x] == ll && r[x] == rr)
{
ans += sum[x];
return ;
}
int mid = (l[x] + r[x]) >> ;
if(rr <= mid) getsum(x * , ll, rr);
else if(ll > mid) getsum(x * + , ll, rr);
else
{
getsum(x * , ll, mid);
getsum(x * + , mid + , rr);
}
} void find(int x, int ll, int rr)//询问连续1的长度
{
pushdown(x);
if(l[x] == ll && r[x] == rr)
{
upmax(ans, m1[x]);
return ;
}
int mid = (l[x] + r[x]) >> ;
if(rr <= mid) find(x * , ll, rr);
else if(ll > mid) find(x * + , ll, rr);
else
{
int tmp = min(mid - ll + , r1[x * ]) + min(rr - mid, l1[x * + ]);
find(x * , ll, mid);
find(x * + , mid + , rr);
upmax(ans, tmp);
}
} void build(int x, int ll ,int rr)
{
l[x] = ll, r[x] = rr;
if(l[x] == r[x])
{
sum[x] = l1[x] = r1[x] = m1[x] = s[l[x]];
if(!sum[x]) l0[x] = r0[x] = m0[x] = ;
return ;
}
int mid = (ll + rr) >> ;
build(x * , ll, mid);
build(x * + , mid + , rr);
update(x);
} void pre()
{
n = read(), m = read();
for(R i = ; i <= n; i ++) s[i] = read();
} void work()
{
int opt, a, b;
for(R i = ; i <= m; i ++)
{
// printf("!!!%d\n", i);
opt = read(), a = read() + , b = read() + ;
if(!opt) change(, a, b, );
else if(opt == ) change(, a, b, );
else if(opt == ) change(, a, b, );
else if(opt == )
{
ans = ;
getsum(, a, b);
printf("%d\n", ans);
}
else if(opt == )
{
ans = ;
find(, a, b);
printf("%d\n", ans);
}
}
} int main()
{
//freopen("operation.in", "r", stdin);
// freopen("operation.out", "w", stdout);
pre();
build(, , n);
work();
//fclose(stdin);
//fclose(stdout);
return ;
}
[SCOI2010]序列操作 线段树的更多相关文章
- BZOJ 1858: [Scoi2010]序列操作( 线段树 )
略恶心的线段树...不过只要弄清楚了AC应该不难.... ---------------------------------------------------------------- #inclu ...
- bzoj1858[Scoi2010]序列操作 线段树
1858: [Scoi2010]序列操作 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 3079 Solved: 1475[Submit][Statu ...
- 【bzoj1858】[Scoi2010]序列操作 线段树区间合并
题目描述 lxhgww最近收到了一个01序列,序列里面包含了n个数,这些数要么是0,要么是1,现在对于这个序列有五种变换操作和询问操作: 0 a b 把[a, b]区间内的所有数全变成0 1 a b ...
- Luogu P2572 [SCOI2010]序列操作 线段树。。
咕咕了...于是借鉴了小粉兔的做法ORZ... 其实就是维护最大子段和的线段树,但上面又多了一些操作....QWQ 维护8个信息:1/0的个数(sum),左/右边起1/0的最长长度(ls,rs),整段 ...
- 洛谷$P2572\ [SCOI2010]$ 序列操作 线段树/珂朵莉树
正解:线段树/珂朵莉树 解题报告: 传送门$w$ 本来是想写线段树的,,,然后神仙$tt$跟我港可以用珂朵莉所以决定顺便学下珂朵莉趴$QwQ$ 还是先写线段树做法$QwQ$? 操作一二三四都很$eas ...
- bzoj1858 [Scoi2010]序列操作——线段树
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1858 线段树...调了一个上午...(后面带 // 的都是改出来的) lazy 标记的下放好 ...
- 【题解】P4247 [清华集训]序列操作(线段树修改DP)
[题解]P4247 [清华集训]序列操作(线段树修改DP) 一道神仙数据结构(DP)题. 题目大意 给定你一个序列,会区间加和区间变相反数,要你支持查询一段区间内任意选择\(c\)个数乘起来的和.对1 ...
- 【BZOJ-1858】序列操作 线段树
1858: [Scoi2010]序列操作 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 1961 Solved: 991[Submit][Status ...
- 【BZOJ-2962】序列操作 线段树 + 区间卷积
2962: 序列操作 Time Limit: 50 Sec Memory Limit: 256 MBSubmit: 678 Solved: 246[Submit][Status][Discuss] ...
随机推荐
- XPath Helper的安装使用
XPath Helper的安装使用 xpath helper 是一款chrome浏览器插件,主要用来分析当前网页信息的xpath,在抓取数据时一般会使用到xpath. 安装 下载地址:http://c ...
- spring-运行时值注入
在项目中经常使用连接数据库的配置,如下所示 <bean id="dataSource" class="org.apache.commons.dbcp.BasicDa ...
- 3. 进程间通信IPC
一.概念 IPC: 1)在linux环境中的每个进程各自有不同的用户地址空间.任何一个进程的全局变量在另一个进程中都看不到,所以进程和进程之间是不能相互访问. 2)如果进程间要交换数据必须通过内核,在 ...
- HyperLedger Fabric 1.4 超级账本起源(5.1)
至比特币开源以来,无数技术人员对其进行研究,并且对该系统经过了无数次改进,超级账本项目(Hyperledger)最初也是用来改善比特币的底层技术,最终由Linux基金会组织发展起来. 开放 ...
- [Cracking the Coding Interview] 4.5 Validate BST
Implement a function to check if a binary tree is a binary search tree. 这道题很经典,让我们判断一棵树是不是二叉查找树.但是首先 ...
- JSOI2018 R1 & 九省联考2018 滚粗记
在NOIP与PKUWC相继滚粗后,rp守恒定律似乎终于开始起作用了…… (尽管Day2依然滚粗?) Day1: 本着前40min不写代码的准则,先把三道题大致过了一遍,似乎都比较喜闻乐见? T1:对抗 ...
- octave简易操作
语言以分号;结尾if for while等语句后用,来承接关系if ,elseif ,else ,end;for i=1:10,end;while a>3 ,end; while true, ...
- 2007: [Noi2010]海拔
2007: [Noi2010]海拔 https://www.lydsy.com/JudgeOnline/problem.php?id=2007 分析: 平面图最小割. S在左下,T在右上,从S到T的一 ...
- C# List集合去重操作注意点
今天调试代码时发现list的distinct方法在对引用类型操作时并没有去重,后来查阅资料发现list去重操作对象集合时比较的是对象的一个个引用地址, 因为集合里的对象都是一个个单独的实例,所以并不会 ...
- 判断电脑CPU硬件支不支持64位
你可以在注册表中查看: HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Session Manager\Environment\PROCESSO ...