Spark版本 1.3
SparkContext初始化流程

1.0 在我们的主类 main() 方法中经常会这么写
  val conf = new SparkConf().setAppName("name").setMaster("local")
  val sc = new SparkContext(conf)
  conf 中保存的是Spark的参数
  sc 是我们的Spark上下文...好无聊...
  conf不再去看(里边都是对于参数的操作, 现阶段不看)
  sc 从 SparkContext(config: SparkConf) 开始~

1.1  * 很重要:SparkContext是Spark提交任务到集群的入口
  * 我们看一下SparkContext的主构造器
  * 1.调用 createSparkEnv 方法创建 SparkEnv, 里面有一个非常重要的对象 ActorSystem
  * 2.创建 TaskScheduler -> 根据提交任务的URL进行匹配 -> TaskSchedulerImpl -> SparkDeploySchedulerBackend(里面有两个Actor)
  * 3.创建 DAGScheduler
  * 4.taskScheduler.start()


1.2	private[spark] val env = createSparkEnv(conf, isLocal, listenerBus)
  class SparkContext(config: SparkConf) extends Logging with ExecutorAllocationClient {
// 调用 def createSparkEnv() 方法, 转到:1.4
private[spark] def createSparkEnv(
conf: SparkConf,
isLocal: Boolean,
listenerBus: LiveListenerBus): SparkEnv = {
SparkEnv.createDriverEnv(conf, isLocal, listenerBus)
} //创建一个后端调度器(schedulerBackend) 和 一个任务调度器(taskScheduler), 转到:1.5
private[spark] var (schedulerBackend, taskScheduler) =
SparkContext.createTaskScheduler(this, master) // 通过 ActorSystem 创建了一个Actor,这个心跳是 Executors 和 DriverActor 的心跳
private val heartbeatReceiver = env.actorSystem.actorOf(
Props(new HeartbeatReceiver(taskScheduler)), "HeartbeatReceiver") // 创建了一个DAGScheduler,以后用来把DAG切分成Stage
@volatile private[spark] var dagScheduler: DAGScheduler = _
try{
dagScheduler = new DAGScheduler(this)
}catch{...} // start TaskScheduler after taskScheduler sets DAGScheduler reference in DAGScheduler's constructor
// 在DAG构造函数中为每个TaskScheduler设置DAGScheduler后, 启动taskScheduler(DAG源码分析, 详见后续文章) 转到:1.6
taskScheduler.start()
...
}

  

1.4
// SparkContext.createSparkEnv中调用了 SparkEnv.createDriverEnv
private[spark] def createDriverEnv(
conf: SparkConf,
isLocal: Boolean,
listenerBus: LiveListenerBus,
mockOutputCommitCoordinator: Option[OutputCommitCoordinator] = None): SparkEnv = {
assert(conf.contains("spark.driver.host"), "spark.driver.host is not set on the driver!")
assert(conf.contains("spark.driver.port"), "spark.driver.port is not set on the driver!")
val hostname = conf.get("spark.driver.host")
val port = conf.get("spark.driver.port").toInt
//调用 create 方法 并传入一坨参数
create(
conf,
SparkContext.DRIVER_IDENTIFIER,
hostname,
port,
isDriver = true,
isLocal = isLocal,
listenerBus = listenerBus,
mockOutputCommitCoordinator = mockOutputCommitCoordinator
)
} private def create(
conf: SparkConf,
executorId: String,
hostname: String,
port: Int,
isDriver: Boolean,
isLocal: Boolean,
listenerBus: LiveListenerBus = null,
numUsableCores: Int = 0,
mockOutputCommitCoordinator: Option[OutputCommitCoordinator] = None): SparkEnv = { ... // Create the ActorSystem for Akka and get the port it binds to.
val (actorSystem, boundPort) = {
val actorSystemName = if (isDriver) driverActorSystemName else executorActorSystemName
// 利用AkkaUtils这个工具类创建ActorSystem
AkkaUtils.createActorSystem(actorSystemName, hostname, port, conf, securityManager)
} ... // 最终将创建好的ActorSystem返回给SparkEnv
// 回调步骤 new Spark() -> create() -> SparkEnv.createDriverEnv -> SparkContext.createSparkEnv()
new SparkEnv(
executorId,
actorSystem,
serializer,
closureSerializer,
cacheManager,
mapOutputTracker,
shuffleManager,
broadcastManager,
blockTransferService,
blockManager,
securityManager,
httpFileServer,
sparkFilesDir,
metricsSystem,
shuffleMemoryManager,
outputCommitCoordinator,
conf)
}

  

1.5
//SparkContext.createSparkEnv 中调用了 (schedulerBackend, taskScheduler) = SparkContext.createTaskScheduler(this, master)
/**
* Create a task scheduler based on a given master URL.
* Return a 2-tuple of the scheduler backend and the task scheduler.
*/
// 根据提交任务时指定的URL创建相应的TaskScheduler 关于TaskScheduler 转到:1.7
private def createTaskScheduler(sc: SparkContext,
master: String): (SchedulerBackend, TaskScheduler) = {
//模式匹配
master match {
// spark的StandAlone模式
case SPARK_REGEX(sparkUrl) =>
// 创建了一个TaskSchedulerImpl. 注: TaskScheduler是一个特质
val scheduler = new TaskSchedulerImpl(sc)
val masterUrls = sparkUrl.split(",").map("spark://" + _)
// 创建了一个SparkDeploySchedulerBackend(Spark后端部署调度器)
val backend = new SparkDeploySchedulerBackend(scheduler, sc, masterUrls)
// 调用initialize, 使用Spark后端部署调度器 初始化调度器
scheduler.initialize(backend)
(backend, scheduler)
... // 其他模式
}
}

  





1.6
DAGScheduler 简介

实现面向阶段调度的高级调度层。它计算每个作业的阶段DAG,跟踪哪些RDD和阶段输出具体化,并找到运行作业的最小计划。
然后,它将阶段作为TaskSets提交给在集群上运行它们的底层TaskScheduler实现。

除了提供阶段的DAG之外,此类还根据当前缓存状态确定运行每个任务的首选位置,并将这些位置传递给低级TaskScheduler。
此外,它处理由于shuffle输出文件丢失而导致的故障,在这种情况下可能需要重新提交旧阶段。在一个不是由随机文件丢失引
起的阶段内的故障由TaskScheduler处理,它将在取消整个阶段之前重试每个任务很多次。

以下是制作或查看此课程更改时使用的核对清单:
添加新数据结构时,请更新 `DAGSchedulerSuite.assertDataStructuresEmpty`以包含新结构。这将有助于捕获内存泄漏。



1.7
TaskScheduler简介

低级任务调度程序接口,目前由TaskSchedulerImpl专门实现。

该接口允许插入不同的任务调度程序。 每个TaskScheduler都为单个SparkContext调度任务。

这些调度程序从DAGScheduler为每个阶段获取提交给它们的任务集,并负责将任务发送到集群,
运行它们,如果存在故障则重试,以及减轻落后者。 他们将事件返回给DAGScheduler。

Spark-源码-SparkContext的初始化的更多相关文章

  1. spark[源码]-sparkContext详解[一]

    spark简述 sparkContext在Spark应用程序的执行过程中起着主导作用,它负责与程序和spark集群进行交互,包括申请集群资源.创建RDD.accumulators及广播变量等.spar ...

  2. spark[源码]-sparkContext概述

    SparkContext概述 sparkContext是所有的spark应用程序的发动机引擎,就是说你想要运行spark程序就必须创建一个,不然就没的玩了.sparkContext负责初始化很多东西, ...

  3. Spark源码剖析 - SparkContext的初始化(二)_创建执行环境SparkEnv

    2. 创建执行环境SparkEnv SparkEnv是Spark的执行环境对象,其中包括众多与Executor执行相关的对象.由于在local模式下Driver会创建Executor,local-cl ...

  4. Spark源码剖析 - SparkContext的初始化(三)_创建并初始化Spark UI

    3. 创建并初始化Spark UI 任何系统都需要提供监控功能,用浏览器能访问具有样式及布局并提供丰富监控数据的页面无疑是一种简单.高效的方式.SparkUI就是这样的服务. 在大型分布式系统中,采用 ...

  5. Spark源码分析 – SparkContext

    Spark源码分析之-scheduler模块 这位写的非常好, 让我对Spark的源码分析, 变的轻松了许多 这里自己再梳理一遍 先看一个简单的spark操作, val sc = new SparkC ...

  6. spark源码阅读--SparkContext启动过程

    ##SparkContext启动过程 基于spark 2.1.0  scala 2.11.8 spark源码的体系结构实在是很庞大,从使用spark-submit脚本提交任务,到向yarn申请容器,启 ...

  7. Apache Spark源码剖析

    Apache Spark源码剖析(全面系统介绍Spark源码,提供分析源码的实用技巧和合理的阅读顺序,充分了解Spark的设计思想和运行机理) 许鹏 著   ISBN 978-7-121-25420- ...

  8. 《Apache Spark源码剖析》

    Spark Contributor,Databricks工程师连城,华为大数据平台开发部部长陈亮,网易杭州研究院副院长汪源,TalkingData首席数据科学家张夏天联袂力荐1.本书全面.系统地介绍了 ...

  9. Spark 源码解析:TaskScheduler的任务提交和task最佳位置算法

    上篇文章<  Spark 源码解析 : DAGScheduler中的DAG划分与提交 >介绍了DAGScheduler的Stage划分算法. 本文继续分析Stage被封装成TaskSet, ...

  10. Spark源码分析:多种部署方式之间的区别与联系(转)

    原文链接:Spark源码分析:多种部署方式之间的区别与联系(1) 从官方的文档我们可以知道,Spark的部署方式有很多种:local.Standalone.Mesos.YARN.....不同部署方式的 ...

随机推荐

  1. java面试题之----数据库事务的四大特性及隔离级别

    本篇讲诉数据库中事务的四大特性(ACID),并且将会详细地说明事务的隔离级别. 如果一个数据库声称支持事务的操作,那么该数据库必须要具备以下四个特性: ⑴ 原子性(Atomicity) 原子性是指事务 ...

  2. 一键完成SAP部署的秘密,想知道么?

    诸如 SAP 这样的企业级应用已成为普遍的流行趋势.考虑到不同行业和需求的特点,所选平台必须能够为不同层面用户和各种 IT 活动提供灵活的容量需求. 此时上云也许是种不错的选择,而想上云的企业,一方面 ...

  3. JSP-Servlet中文乱码

    客户端 get 方法时 出现乱码: 解决办法: String str1 = request.getParameter("stuname"); String str = new St ...

  4. 通过yum安装最新服务

    给yum添加所安装服务最新rpm源  #这里用mysql为例 # wget dev.mysql.com/get/mysql-community-release-el6-5.noarch.rpm # y ...

  5. ZooKeeper 典型应用场景-Master选举

    master选举 1.使用场景及结构 现在很多时候我们的服务需要7*24小时工作,假如一台机器挂了,我们希望能有其它机器顶替它继续工作.此类问题现在多采用master-salve模式,也就是常说的主从 ...

  6. 简单的PHP算法题

    简单的PHP算法题 目录 1.只根据n值打印n个0 2.根据n值打印一行 0101010101010101010101…… 3.根据n值实现1 00 111 0000 11111…… 4.根据n值实现 ...

  7. python_列表/元组/元组列表以及如何使用

    1.list是处理一组有序项目的数据结构 #定义一个列表 list=[1,2,3] print type(list) print list[0] 输出: <type 'list'> 1 2 ...

  8. UOJ 35 后缀数组

    后缀数组裸题,求排名第1~n的后缀,想相邻后缀的最长公共前缀. 集训队模板就是硬lO(∩_∩)O哈哈~ #include <cstdio> #include <cmath> # ...

  9. hihocoder 后缀自动机四·重复旋律6

    题目 对于\(k\in[1,n]\)求出长度为\(k\)的子串出现次数最多的出现了多少次 我直到现在才理解后缀自动机上的子树和是什么意思 非常显然的一点是 \[endpos(link(u))⊇endp ...

  10. <知识整理>2019清北学堂提高储备D3

    全天动态规划入门到入坑... 一.总概: 动态规划是指解最优化问题的一类算法,考察方式灵活,也常是NOIP难题级别.先明确动态规划里的一些概念: 状态:可看做用动态规划求解问题时操作的对象. 边界条件 ...