机器学习中很多数值优化算法都会用到线搜索(line search)。线搜索的目的是在搜索方向上找到是目标函数\(f(x)\)最小的点。然而,精确找到最小点比较耗时,由于搜索方向本来就是近似,所以用较小的代价找到最小点的近似就可以了。 Backtracking Line Search(BLS)就是这么一种线搜索算法。

BLS算法的思想是,在搜索方向上,先设置一个初始步长\({\alpha _0}\),如果步长太大,则缩减步长,知道合适为止。

上面的想法要解决两个问题:

1. 如何判断当前步长是否合适 (Armijo–Goldstein condition)

\[f({\bf{x}} + \alpha {\mkern 1mu} {\bf{p}}) \le f({\bf{x}}) + \alpha {\mkern 1mu} c{\mkern 1mu} m{\mkern 1mu} \]

\[m = {{\bf{p}}^{\rm{T}}}{\mkern 1mu} \nabla f({\bf{x}}){\mkern 1mu} \]

其中,\({\bf{p}}\)是当前搜寻方向,\(\alpha \)是步长,\({\mkern 1mu} c{\mkern 1mu} \)是控制参数,需要根据情况人工核定。

从上式可以看出,当前点的斜率越小,\(f({\bf{x}} + \alpha {\mkern 1mu} {\bf{p}}) - f({\bf{x}})\)的要求越小,步长就越小。对于一般的凸问题,搜寻点越接近最优点,原函数的斜率越较小,因此步长越小,这也是符合直觉的。

2. 如何则缩减步长

搜索步长的缩减通过\(\tau {\mkern 1mu} \)参数来控制,主要通过人工核定,既\({\alpha _j} = \tau {\mkern 1mu} {\alpha _{j - 1}}\)

总结一下BLS算法的流程如下:

1. 设置初始步长\({\alpha _0}\)

2. 判断\(f({\bf{x}} + \alpha {\mkern 1mu} {\bf{p}}) \le f({\bf{x}}) + \alpha {\mkern 1mu} c{\mkern 1mu} m{\mkern 1mu} \)是否满足,如果满足,停止;否则3:

3. \({\alpha _j} = \tau {\mkern 1mu} {\alpha _{j - 1}}\),重复2

【原创】回溯线搜索 Backtracking line search的更多相关文章

  1. Backtracking line search的理解

    使用梯度下降方法求解凸优化问题的时候,会遇到一个问题,选择什么样的梯度下降步长才合适. 假设优化函数为,若每次梯度下降的步长都固定,则可能出现左图所示的情况,无法收敛.若每次步长都很小,则下降速度非常 ...

  2. 重新发现梯度下降法--backtracking line search

    一直以为梯度下降很简单的,结果最近发现我写的一个梯度下降特别慢,后来终于找到原因:step size的选择很关键,有一种叫backtracking line search的梯度下降法就非常高效,该算法 ...

  3. 线搜索(line search)方法

    在机器学习中, 通常需要求某个函数的最值(比如最大似然中需要求的似然的最大值). 线搜索(line search)是求得一个函数\(f(x)\)的最值的两种常用迭代方法之一(另外一个是trust re ...

  4. 一段有关线搜索的从python到matlab的代码

    在Udacity上很多关于机器学习的课程几乎都是基于python语言的,博主“ttang”的博文“重新发现梯度下降法——backtracking line search”里对回溯线搜索的算法实现也是用 ...

  5. Line Search and Quasi-Newton Methods 线性搜索与拟牛顿法

    Gradient Descent 机器学习中很多模型的参数估计都要用到优化算法,梯度下降是其中最简单也用得最多的优化算法之一.梯度下降(Gradient Descent)[3]也被称之为最快梯度(St ...

  6. Line Search and Quasi-Newton Methods

    Gradient Descent 机器学习中很多模型的参数估计都要用到优化算法,梯度下降是其中最简单也用得最多的优化算法之一.梯度下降(Gradient Descent)[3]也被称之为最快梯度(St ...

  7. [原创]用“人话”解释不精确线搜索中的Armijo-Goldstein准则及Wolfe-Powell准则

    [原创]用“人话”解释不精确线搜索中的Armijo-Goldstein准则及Wolfe-Powell准则 转载请注明出处:http://www.codelast.com/ line search(一维 ...

  8. Leetcode之回溯法专题-79. 单词搜索(Word Search)

    Leetcode之回溯法专题-79. 单词搜索(Word Search) 给定一个二维网格和一个单词,找出该单词是否存在于网格中. 单词必须按照字母顺序,通过相邻的单元格内的字母构成,其中“相邻”单元 ...

  9. 用“人话”解释不精确线搜索中的Armijo-Goldstein准则及Wolfe-Powell准则

    转载请注明出处:http://www.codelast.com/ line search(一维搜索,或线搜索)是最优化(Optimization)算法中的一个基础步骤/算法.它可以分为精确的一维搜索以 ...

随机推荐

  1. windows 下c++编译

    http://blog.csdn.net/dyllove98/article/details/9314993

  2. [C/CPP系列知识] 那些程序C语言可以编译通过但C++无法编译成功 Write a C program that won’t compile in C++

    http://www.geeksforgeeks.org/write-c-program-wont-compiler-c/ 1) C++中在函数声明之前调用一个函数会引发错误,但是在C中有可能可以. ...

  3. hdu 4888

    网络流建模,建模不难,难在找环: #include<cstdio> #include<algorithm> #include<vector> #include< ...

  4. DevOps 和技术债务偿还自动化

    当企业想要迁移到一个 DevOps 模型时,经常需要偿还高等级的技术债务 说得更明确一点,机构往往陷入「技术债务的恶性循环」中,以至于任何迅速.敏捷的迁移方式都无法使用.这是技术债务中的希腊债务危机水 ...

  5. HDU4758 Walk Through Squares AC自动机&&dp

    这道题当时做的时候觉得是数论题,包含两个01串什么的,但是算重复的时候又很蛋疼,赛后听说是字符串,然后就觉得很有可能.昨天队友问到这一题,在学了AC自动机之后就觉得简单了许多.那个时候不懂AC自动机, ...

  6. hdu 4599 Dice 概率DP

    思路: 1.求f[n];dp[i]表示i个连续相同时的期望 则 dp[0]=1+dp[1]     dp[1]=1+(5dp[1]+dp[2])/6     ……     dp[i]=1+(5dp[1 ...

  7. 29. 栈的push,pop序列

    题目:给定2个整数序列,其中1个是栈的push顺序,判断另一个有没有可能是对应的pop顺序 解:其实这题主要是判断进栈次数和出栈次数誓不是相等.我是用栈作的,效率不高,每一个元素最多出栈1次,进栈1此 ...

  8. MIT算法导论——第四讲.Quicksort

    本栏目(Algorithms)下MIT算法导论专题是个人对网易公开课MIT算法导论的学习心得与笔记.所有内容均来自MIT公开课Introduction to Algorithms中Charles E. ...

  9. hibernate 联合主键生成机制(组合主键XML配置方式)

    hibernate 联合主键生成机制(组合主键XML配置方式)   如果数据库中用多个字段而不仅仅是一个字段作为主键,也就是联合主键,这个时候就可以使用hibernate提供的联合主键生成策略. 具体 ...

  10. Android Studio安装、配置

    Google在2013年I/O大会上发布了Android Studio,AndroidStudio是一个基于IntelliJ IDEA的Android开发工具.这个IDE要比eclipse智能很多,具 ...