机器学习中很多数值优化算法都会用到线搜索(line search)。线搜索的目的是在搜索方向上找到是目标函数\(f(x)\)最小的点。然而,精确找到最小点比较耗时,由于搜索方向本来就是近似,所以用较小的代价找到最小点的近似就可以了。 Backtracking Line Search(BLS)就是这么一种线搜索算法。

BLS算法的思想是,在搜索方向上,先设置一个初始步长\({\alpha _0}\),如果步长太大,则缩减步长,知道合适为止。

上面的想法要解决两个问题:

1. 如何判断当前步长是否合适 (Armijo–Goldstein condition)

\[f({\bf{x}} + \alpha {\mkern 1mu} {\bf{p}}) \le f({\bf{x}}) + \alpha {\mkern 1mu} c{\mkern 1mu} m{\mkern 1mu} \]

\[m = {{\bf{p}}^{\rm{T}}}{\mkern 1mu} \nabla f({\bf{x}}){\mkern 1mu} \]

其中,\({\bf{p}}\)是当前搜寻方向,\(\alpha \)是步长,\({\mkern 1mu} c{\mkern 1mu} \)是控制参数,需要根据情况人工核定。

从上式可以看出,当前点的斜率越小,\(f({\bf{x}} + \alpha {\mkern 1mu} {\bf{p}}) - f({\bf{x}})\)的要求越小,步长就越小。对于一般的凸问题,搜寻点越接近最优点,原函数的斜率越较小,因此步长越小,这也是符合直觉的。

2. 如何则缩减步长

搜索步长的缩减通过\(\tau {\mkern 1mu} \)参数来控制,主要通过人工核定,既\({\alpha _j} = \tau {\mkern 1mu} {\alpha _{j - 1}}\)

总结一下BLS算法的流程如下:

1. 设置初始步长\({\alpha _0}\)

2. 判断\(f({\bf{x}} + \alpha {\mkern 1mu} {\bf{p}}) \le f({\bf{x}}) + \alpha {\mkern 1mu} c{\mkern 1mu} m{\mkern 1mu} \)是否满足,如果满足,停止;否则3:

3. \({\alpha _j} = \tau {\mkern 1mu} {\alpha _{j - 1}}\),重复2

【原创】回溯线搜索 Backtracking line search的更多相关文章

  1. Backtracking line search的理解

    使用梯度下降方法求解凸优化问题的时候,会遇到一个问题,选择什么样的梯度下降步长才合适. 假设优化函数为,若每次梯度下降的步长都固定,则可能出现左图所示的情况,无法收敛.若每次步长都很小,则下降速度非常 ...

  2. 重新发现梯度下降法--backtracking line search

    一直以为梯度下降很简单的,结果最近发现我写的一个梯度下降特别慢,后来终于找到原因:step size的选择很关键,有一种叫backtracking line search的梯度下降法就非常高效,该算法 ...

  3. 线搜索(line search)方法

    在机器学习中, 通常需要求某个函数的最值(比如最大似然中需要求的似然的最大值). 线搜索(line search)是求得一个函数\(f(x)\)的最值的两种常用迭代方法之一(另外一个是trust re ...

  4. 一段有关线搜索的从python到matlab的代码

    在Udacity上很多关于机器学习的课程几乎都是基于python语言的,博主“ttang”的博文“重新发现梯度下降法——backtracking line search”里对回溯线搜索的算法实现也是用 ...

  5. Line Search and Quasi-Newton Methods 线性搜索与拟牛顿法

    Gradient Descent 机器学习中很多模型的参数估计都要用到优化算法,梯度下降是其中最简单也用得最多的优化算法之一.梯度下降(Gradient Descent)[3]也被称之为最快梯度(St ...

  6. Line Search and Quasi-Newton Methods

    Gradient Descent 机器学习中很多模型的参数估计都要用到优化算法,梯度下降是其中最简单也用得最多的优化算法之一.梯度下降(Gradient Descent)[3]也被称之为最快梯度(St ...

  7. [原创]用“人话”解释不精确线搜索中的Armijo-Goldstein准则及Wolfe-Powell准则

    [原创]用“人话”解释不精确线搜索中的Armijo-Goldstein准则及Wolfe-Powell准则 转载请注明出处:http://www.codelast.com/ line search(一维 ...

  8. Leetcode之回溯法专题-79. 单词搜索(Word Search)

    Leetcode之回溯法专题-79. 单词搜索(Word Search) 给定一个二维网格和一个单词,找出该单词是否存在于网格中. 单词必须按照字母顺序,通过相邻的单元格内的字母构成,其中“相邻”单元 ...

  9. 用“人话”解释不精确线搜索中的Armijo-Goldstein准则及Wolfe-Powell准则

    转载请注明出处:http://www.codelast.com/ line search(一维搜索,或线搜索)是最优化(Optimization)算法中的一个基础步骤/算法.它可以分为精确的一维搜索以 ...

随机推荐

  1. 母函数入门笔记(施工中…

    定义:对于一个数列,它的母函数(即生成函数)为   为了对这个准确求值,我们设    举一个简单的例子 例1 对于数列 他的生成函数为 ,那么应用一下等比数列求和公式 这里由于 所以当时 那么   例 ...

  2. uva 10313

    递推   参考了别人的解法 dp[i][j] 表示价值为i用j个硬币可以有多少种方法 dp[j][k] += dp[j-i][k-1] 意思是多加一枚价值为i的硬币,加上价值为j-i用k-1个硬币的总 ...

  3. hdu 2736 Surprising Strings(类似哈希,字符串处理)

    重点在判重的方法,嘻嘻 题目 #define _CRT_SECURE_NO_WARNINGS #include<stdio.h> #include<string.h> int ...

  4. Jquery+Jquery-easyui的倒计时

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  5. 通过Calendar 类获取前一个月的第一天

      SimpleDateFormat time = new SimpleDateFormat("yyyy-MM-dd 00:00:00"); //获取到当前的时间     Cale ...

  6. NuGet学习笔记——初识NuGet及快速安装使用

    源自:http://kb.cnblogs.com/page/143190/

  7. TortoiseSVN文件夹及文件图标不显示解决方法(转发)

    地址:http://blog.csdn.net/lishehe/article/details/8257545 由于自己的电脑是win7(64位)的,系统安装TortoiseSVN之后,其他的功能都能 ...

  8. Biba模型简介

    上周上信息安全的课,老师留了个Biba模型的作业.自己看书了解了一下,记录如下. 参考资料:石文昌<信息系统安全概论第2版> ISBN:978-7-121-22143-9 Biba模型是毕 ...

  9. TCL语言笔记:TCL练习

    一.关于随机数的练习 1.随机生成一个最大值到最小值之间的整数 proc random {min max} { return [expr round(($max-$min)*rand()+$min)] ...

  10. TCL语言笔记:TCL中的控制结构命令

    一.引言 控制结构允许程序根据不同的状态.条件和参数来选择不同的处理和执行路径,从而使代码具有更强的灵活性.健壮性和可读性. Tcl 提供了 if.if/else.if/elseif.foreach. ...