Wormholes
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 24249   Accepted: 8652

Description

While exploring his many farms, Farmer John has discovered a number of amazing wormholes. A wormhole is very peculiar because it is a one-way path that delivers you to its destination at a time that is BEFORE you entered the wormhole! Each of FJ's farms comprises N (1 ≤ N ≤ 500) fields conveniently numbered 1..NM (1 ≤ M ≤ 2500) paths, and W (1 ≤ W ≤ 200) wormholes.

As FJ is an avid time-traveling fan, he wants to do the following: start at some field, travel through some paths and wormholes, and return to the starting field a time before his initial departure. Perhaps he will be able to meet himself :) .

To help FJ find out whether this is possible or not, he will supply you with complete maps to F (1 ≤ F ≤ 5) of his farms. No paths will take longer than 10,000 seconds to travel and no wormhole can bring FJ back in time by more than 10,000 seconds.

Input

Line 1: A single integer, FF farm descriptions follow. 
Line 1 of each farm: Three space-separated integers respectively: NM, and W 
Lines 2..M+1 of each farm: Three space-separated numbers (SET) that describe, respectively: a bidirectional path between S and E that requires T seconds to traverse. Two fields might be connected by more than one path. 
Lines M+2..M+W+1 of each farm: Three space-separated numbers (SET) that describe, respectively: A one way path from S to E that also moves the traveler back T seconds.

Output

Lines 1..F: For each farm, output "YES" if FJ can achieve his goal, otherwise output "NO" (do not include the quotes).

Sample Input

2
3 3 1
1 2 2
1 3 4
2 3 1
3 1 3
3 2 1
1 2 3
2 3 4
3 1 8

Sample Output

NO
YES

Hint

For farm 1, FJ cannot travel back in time. 
For farm 2, FJ could travel back in time by the cycle 1->2->3->1, arriving back at his starting location 1 second before he leaves. He could start from anywhere on the cycle to accomplish this.

Source

 
 
 
 
这题就是判断存不存在负环回路。
前M条是双向边,后面的W是单向的负边。
 
为了防止出现不连通,
增加一个结点作为起点。
起点到所有点的长度为0
 
bellman_ford算法:
/*
* POJ 3259
* 判断图中是否存在负环回路。
* 为了防止图不连通的情况,增加一个点作为起点,这个点和其余的点都相连。
*/ #include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <vector>
#include <queue>
using namespace std;
/*
* 单源最短路bellman_ford算法,复杂度O(VE)
* 可以处理负边权图。
* 可以判断是否存在负环回路。返回true,当且仅当图中不包含从源点可达的负权回路
* vector<Edge>E;先E.clear()初始化,然后加入所有边
* 点的编号从1开始(从0开始简单修改就可以了)
*/
const int INF=0x3f3f3f3f;
const int MAXN=;
int dist[MAXN];
struct Edge
{
int u,v;
int cost;
Edge(int _u=,int _v=,int _cost=):u(_u),v(_v),cost(_cost){}
};
vector<Edge>E;
bool bellman_ford(int start,int n)//点的编号从1开始
{
for(int i=;i<=n;i++)dist[i]=INF;
dist[start]=;
for(int i=;i<n;i++)//最多做n-1次
{
bool flag=false;
for(int j=;j<E.size();j++)
{
int u=E[j].u;
int v=E[j].v;
int cost=E[j].cost;
if(dist[v]>dist[u]+cost)
{
dist[v]=dist[u]+cost;
flag=true;
}
}
if(!flag)return true;//没有负环回路
}
for(int j=;j<E.size();j++)
if(dist[E[j].v]>dist[E[j].u]+E[j].cost)
return false;//有负环回路
return true;//没有负环回路
} int main()
{
// freopen("in.txt","r",stdin);
// freopen("out.txt","w",stdout);
int T;
int N,M,W;
int a,b,c;
scanf("%d",&T);
while(T--)
{
scanf("%d%d%d",&N,&M,&W);
E.clear();
while(M--)
{
scanf("%d%d%d",&a,&b,&c);
E.push_back(Edge(a,b,c));
E.push_back(Edge(b,a,c));
}
while(W--)
{
scanf("%d%d%d",&a,&b,&c);
E.push_back(Edge(a,b,-c));
}
for(int i=;i<=N;i++)
E.push_back(Edge(N+,i,));
if(!bellman_ford(N+,N+))printf("YES\n");
else printf("NO\n");
}
return ;
}

SPFA算法:

//============================================================================
// Name : POJ.cpp
// Author :
// Version :
// Copyright : Your copyright notice
// Description : Hello World in C++, Ansi-style
//============================================================================ #include <iostream>
#include <string.h>
#include <stdio.h>
#include <algorithm>
#include <vector>
#include <queue>
using namespace std;
/*
* 单源最短路SPFA
* 时间复杂度 0(kE)
* 这个是队列实现,有时候改成栈实现会更加快,很容易修改
* 这个复杂度是不定的
*/
const int MAXN=;
const int INF=0x3f3f3f3f;
struct Edge
{
int v;
int cost;
Edge(int _v=,int _cost=):v(_v),cost(_cost){}
};
vector<Edge>E[MAXN];
void addedge(int u,int v,int w)
{
E[u].push_back(Edge(v,w));
}
bool vis[MAXN];
int cnt[MAXN];
int dist[MAXN];
bool SPFA(int start,int n)
{
memset(vis,false,sizeof(vis));
for(int i=;i<=n;i++)dist[i]=INF;
dist[start]=;
vis[start]=true;
queue<int>que;
while(!que.empty())que.pop();
que.push(start);
memset(cnt,,sizeof(cnt));
cnt[start]=;
while(!que.empty())
{
int u=que.front();
que.pop();
vis[u]=false;
for(int i=;i<E[u].size();i++)
{
int v=E[u][i].v;
if(dist[v]>dist[u]+E[u][i].cost)
{
dist[v]=dist[u]+E[u][i].cost;
if(!vis[v])
{
vis[v]=true;
que.push(v);
if(++cnt[v]>n)return false;
//有负环回路
}
}
}
}
return true;
}
int main()
{
// freopen("in.txt","r",stdin);
// freopen("out.txt","w",stdout);
int T;
int N,M,W;
int a,b,c;
scanf("%d",&T);
while(T--)
{
scanf("%d%d%d",&N,&M,&W);
for(int i=;i<=N+;i++)E[i].clear();
while(M--)
{
scanf("%d%d%d",&a,&b,&c);
addedge(a,b,c);
addedge(b,a,c);
}
while(W--)
{
scanf("%d%d%d",&a,&b,&c);
addedge(a,b,-c);
}
for(int i=;i<=N;i++)
addedge(N+,i,);
if(!SPFA(N+,N+))printf("YES\n");
else printf("NO\n");
}
return ;
}
 
 
 
 

POJ 3259 Wormholes(最短路,判断有没有负环回路)的更多相关文章

  1. POJ 3259 Wormholes【bellman_ford判断负环——基础入门题】

    链接: http://poj.org/problem?id=3259 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22010#probl ...

  2. POJ 3259 Wormholes 最短路+负环

    原题链接:http://poj.org/problem?id=3259 题意 有个很厉害的农民,它可以穿越虫洞去他的农场,当然他也可以通过道路,虫洞都是单向的,道路都是双向的,道路会花时间,虫洞会倒退 ...

  3. poj 3259 Wormholes(bellman-ford判断负环)

    题目链接:http://poj.org/problem?id=3259 题目就是问你能否回到原点而且时间还倒回去了.题目中有些路中有单向的虫洞能让时间回到过去 所以只要将虫洞这条边的权值赋为负然后再判 ...

  4. poj 3259 Wormholes(最短路 Bellman)

    题目:http://poj.org/problem?id=3259 题意:一个famer有一些农场,这些农场里面有一些田地,田地里面有一些虫洞,田地和田地之间有路,虫洞有这样的性质: 时间倒流.问你这 ...

  5. POJ 3259 Wormholes (最短路)

    Wormholes Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 34302   Accepted: 12520 Descr ...

  6. poj 3259 Wormholes【spfa判断负环】

    Wormholes Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 36729   Accepted: 13444 Descr ...

  7. (简单) POJ 3259 Wormholes,SPFA判断负环。

    Description While exploring his many farms, Farmer John has discovered a number of amazing wormholes ...

  8. POJ 3259 Wormholes【Bellman_ford判断负环】

    题意:给出n个点,m条正权的边,w条负权的边,问是否存在负环 因为Bellman_ford最多松弛n-1次, 因为从起点1终点n最多经过n-2个点,即最多松弛n-1次,如果第n次松弛还能成功的话,则说 ...

  9. poj 3259 Wormholes 【SPFA&amp;&amp;推断负环】

    Wormholes Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 36852   Accepted: 13502 Descr ...

随机推荐

  1. Android列表视图(List View)

    Android列表视图(ListView) ListView是一个显示滚动项列表的示视图组(viewgroup),通过使用适配器(Adapter)把这些列表项自动插入到列表中.适配器比如从一个数组或是 ...

  2. [HDOJ2818]Building Block(带权并查集,路径压缩)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2818 题意:有N个块,每次有两个操作: M x y表示把x所在的那一堆全部移到y所在的那一堆的下方. ...

  3. 面试题_48_to_65_Java 集合框架的面试题

    这部分也包含数据结构.算法及数组的面试问题 48) List.Set.Map 和 Queue 之间的区别(答案)List 是一个有序集合,允许元素重复.它的某些实现可以提供基于下标值的常量访问时间,但 ...

  4. km算法的个人理解

    首先相对于上个blog讲的匈牙利算法用于解决无权二分图的最佳匹配,km算法则是在匈牙利算法基础上更进一层的,每条边增加了权值后,真的开始看时有些无厘头,觉得没有什么好方法,但两位牛人Kuhn-Munk ...

  5. UVa 10003 (可用四边形不等式优化) Cutting Sticks

    题意: 有一个长为L的木棍,木棍中间有n个切点.每次切割的费用为当前木棍的长度.求切割木棍的最小费用. 分析: d(i, j)表示切割第i个切点到第j个切点这段所需的最小费用.则有d(i, j) = ...

  6. POJ 1577 Falling Leaves

    题意:给出一些字符串,从上到下的建树,输出其前序遍历 像前面那一题一样,先建树,然后再递归前序遍历 不过想像上一题那样用数组建树,建树和上题一样的办法,可是应该怎么输出前序遍历呢= = 还是看的题解= ...

  7. 为apache单独编译mod_rewrite.so

    今天要把一个站点搬到一台Red Hat 4.1.2-42系统上,在配置rewrite的时候,发现apache没有mod_rewrite,可能是当初编译apache的时候没有带上 --enable-re ...

  8. HDU 5312 Sequence (规律题)

    题意: 一个序列的第n项为3*n*(n-1)+1,而 n>=1,现在给一个正整数m,问其最少由多少个序列中的数组成? 思路: 首先,序列第1项是1,所以任何数都能构成了.但是最少应该是多少?对式 ...

  9. Java [Leetcode 58]Length of Last Word

    题目描述: Given a string s consists of upper/lower-case alphabets and empty space characters ' ', return ...

  10. Spring各jar包的作用(转载)

    spring.jar是包含有完整发布的单个jar 包,spring.jar中包含除了spring-mock.jar里所包含的内容外其它所有jar包的内容,因为只有在开发环境下才会用到 spring-m ...