HDU 4370 0 or 1 (最短路+最小环)
0 or 1
题目链接:
Rhttp://acm.hust.edu.cn/vjudge/contest/122685#problem/R
Description
```
Given a n*n matrix C ij (1Besides,X ij meets the following conditions:
1.X 12+X 13+...X 1n=1
2.X 1n+X 2n+...X n-1n=1
3.for each i (1<i<n), satisfies ∑X ki (1<=k<=n)=∑X ij (1<=j<=n).
For example, if n=4,we can get the following equality:
X 12+X 13+X 14=1
X 14+X 24+X 34=1
X 12+X 22+X 32+X 42=X 21+X 22+X 23+X 24
X 13+X 23+X 33+X 43=X 31+X 32+X 33+X 34
Now ,we want to know the minimum of ∑C ij*X ij(1<=i,j<=n) you can get.
Hint
For sample, X 12=X 24=1,all other X ij is 0.
</big>
##Input
<big>
The input consists of multiple test cases (less than 35 case).
For each test case ,the first line contains one integer n (1<n<=300).
The next n lines, for each lines, each of which contains n integers, illustrating the matrix C, The j-th integer on i-th line is C ij(0<=C ij<=100000).
</big>
##Output
<big>
For each case, output the minimum of ∑C ij*X ij you can get.
</big>
##Sample Input
<big>
4
1 2 4 10
2 0 1 1
2 2 0 5
6 3 1 2
</big>
##Sample Output
<big>
3
</big>
##Hint
<big>
</big>
<br/>
##题意:
<big>
求满足题目条件的最小和.
</big>
<br/>
##题解:
<big>
一道多校的好题,一开始还是以为是个dp什么的,看了题解才知道居然可以用图论做.
题目的条件分别表示:起点出度为1,终点入度为1,其他点出入度相等.
这就描述了从起点到终点的一条简单路径. 即求最短路.
考虑特殊情况还需要记录起点和终点的最小环(非自环).
<br/>
详细题解参考下面的第二份代码.
</big>
<br/>
##代码:
``` cpp
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <queue>
#include <map>
#include <set>
#include <vector>
#define LL long long
#define eps 1e-8
#define maxn 310
#define mod 1000000007
#define inf 0x3f3f3f3f
#define IN freopen("in.txt","r",stdin);
using namespace std;
int n;
int value[maxn][maxn];
int dis[maxn];
int pre[maxn];
bool vis[maxn];
int dijkstra(int s) {
int cir = inf; // 最小花费环(经过s)
memset(vis, 0, sizeof(vis));
memset(pre, -1, sizeof(pre));
for(int i=1; i<=n; i++) dis[i] = inf; dis[s] = 0;
for(int i=1; i<=n; i++) {
int p, mindis = inf;
for(int j=1; j<=n; j++) {
if(!vis[j] && dis[j]<mindis)
mindis = dis[p=j];
}
vis[p] = 1;
for(int j=1; j<=n; j++) {
if(j==s && p!=s) //不能是自环
cir = min(cir, dis[p]+value[p][s]);
if(dis[j] > dis[p]+value[p][j]) {
dis[j] = dis[p] + value[p][j];
pre[j] = p;
}
}
}
return cir;
}
int main(void)
{
//IN;
while(scanf("%d", &n) != EOF && n)
{
for(int i=1; i<=n; i++)
for(int j=1; j<=n; j++) {
int x; scanf("%d", &x);
value[i][j] = x;
}
int cir1 = dijkstra(n);
int cir2 = dijkstra(1);
int ans = min(dis[n], cir1+cir2);
printf("%d\n", ans);
}
return 0;
}
参考题解及代码:
/*
HDU 4370 0 or 1
转换思维的题啊,由一道让人不知如何下手的题,转换为了最短路
基本思路就是把矩阵看做一个图,图中有n个点,1号点出度为1,
n号点入度为1,其它点出度和入度相等,路径长度都是非负数,
等价于一条从1号节点到n号节点的路径,故Xij=1表示需要经
过边(i,j),代价为Cij。Xij=0表示不经过边(i,j)。注意到Cij非负
且题目要求总代价最小,因此最优答案的路径一定可以对应一条简单路径。
最终,我们直接读入边权的邻接矩阵,跑一次1到n的最短路即可,记最短路为path。
漏了如下的情况B:
从1出发,走一个环(至少经过1个点,即不能
是自环),回到1;从n出发,走一个环(同理),回到n。
也就是1和n点的出度和入度都为1,其它点的出度和入度为0.
由于边权非负,于是两个环对应着两个简单环。
因此我们可以从1出发,找一个最小花费环,记代价为c1,
再从n出发,找一个最小花费环,记代价为c2。
(只需在最短路算法更新权值时多加一条记录即可:if(i==S) cir=min(cir,dis[u]+g[u][i]))
故最终答案为min(path,c1+c2)
*/
/*
本程序用SPFA来完成最短路。
但是由于要计算从出发点出发的闭环的路径长度。
所以要在普通SPFA的基础上做点变化。
就是把dist[start]设为INF。同时一开始并不是让出发点入队,而是让
出发点能够到达的点入队。
*/
#include<stdio.h>
#include<iostream>
#include<string.h>
#include<algorithm>
using namespace std;
const int INF=0x3f3f3f3f;
const int MAXN=330;
int cost[MAXN][MAXN];//保存路径长度的邻接矩阵
int dist[MAXN];
int que[MAXN];//注意队列的循环利用,建成循环队列
bool vis[MAXN];//是否在队列中标记
void SPFA(int start,int n)
{
int front=0,rear=0;
for(int v=1;v<=n;v++)//初始化
{
if(v==start)//由于要找start的闭环,所以dist[start]设为INF,且不入队
{
dist[v]=INF;
vis[v]=false;
}
else if(cost[start][v]!=INF)
{
dist[v]=cost[start][v];
que[rear++]=v;
vis[v]=true;
}
else//即dist[start][v]==INF情况,对本题没有这种情况
{
dist[v]=INF;
vis[v]=false;
}
}
while(front!=rear)//注意这个条件是不等,因为是循环队列
{
int u=que[front++];
for(int v=1;v<=n;v++)
{
if(dist[v]>dist[u]+cost[u][v])
{
dist[v]=dist[u]+cost[u][v];
if(!vis[v])//不在队列
{
vis[v]=true;
que[rear++]=v;
if(rear>=MAXN) rear=0;//循环队列
}
}
}
vis[u]=false;
if(front>=MAXN)front=0;
}
}
int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int n;
while(scanf("%d",&n)!=EOF)
{
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
scanf("%d",&cost[i][j]);
SPFA(1,n);
int ans=dist[n];//1到n的最短路
int loop1=dist[1];//1的闭环长度
SPFA(n,n);
int loopn=dist[n];//n的闭环长度
ans=min(ans,loop1+loopn);
printf("%d\n",ans);
}
return 0;
}
HDU 4370 0 or 1 (最短路+最小环)的更多相关文章
- HDU - 4370 0 or 1 最短路
HDU - 4370 参考:https://www.cnblogs.com/hollowstory/p/5670128.html 题意: 给定一个矩阵C, 构造一个A矩阵,满足条件: 1.X12+X1 ...
- HDU 4370 0 or 1 (最短路)
[题目链接](http://acm.hdu.edu.cn/showproblem.ph Problem Description Given a n/n matrix Cij (1<=i,j< ...
- HDU - 4370 0 or 1
0 or 1 Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Subm ...
- hdu 4370 0 or 1,最短路
题目描述 给定n * n矩阵C ij(1 <= i,j <= n),我们要找到0或1的n * n矩阵X ij(1 <= i,j <= n). 此外,X ij满足以下条件: 1. ...
- HDU 4370 0 or 1(转化为最短路)题解
思路:虽然是最短路专题里的,但也很难想到是最短路,如果能通过这些关系想到图论可能会有些思路.我们把X数组看做邻接矩阵,那么三个条件就转化为了:1.1的出度为1:2.n的入度为1:3.2~n-1的出度等 ...
- HDU 4370 0 or 1(spfa+思维建图+计算最小环)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4370 题目大意:有一个n*n的矩阵Cij(1<=i,j<=n),要找到矩阵Xij(i< ...
- 思维题(转换) HDU 4370 0 or 1
题目传送门 题意:题目巨晦涩的传递出1点和n点的初度等于入度等于1, 其余点出度和入度相等 分析:求最小和可以转换成求最短路,这样符合条件,但是还有一种情况.1点形成一个环,n点也形成一个环,这样也是 ...
- (中等) HDU 4370 0 or 1,建模+Dijkstra。
Description Given a n*n matrix C ij (1<=i,j<=n),We want to find a n*n matrix X ij (1<=i,j&l ...
- HDU 4370 0 or 1 (01规划)【Dijkstra】||【spfa】
<题目链接> 题目大意: 一个n*n的01矩阵,满足以下条件 1.X12+X13+...X1n=12.X1n+X2n+...Xn-1n=13.for each i (1<i<n ...
随机推荐
- [Codeforces676B]Pyramid of Glasses(递推,DP)
题目链接:http://codeforces.com/problemset/problem/676/B 递推,dp(i, j)表示第i层第j个杯子,从第一层开始向下倒,和数塔一样的题.每个杯子1个时间 ...
- Codeforces Round #248 (Div. 2) C. Ryouko's Memory Note (vector 替换)
题目链接 题意:给m个数字, 这些数字都不大于 n, sum的值为相邻两个数字 差的绝对值.求这n个数字里把一个数字 用 其中另一个数字代替以后, 最小的sum值. 分析:刚开始以为两个for 最坏 ...
- sdut 2846 Remove Trees (二分 + 贪心)
题目 和poj 上的一道题几乎一样. 题意:已知n棵树距第一棵树的距离,求删掉m棵树后的 树之间 的最小距离 的最大值. 思路:二分枚举最小的距离,注意二分的写法. #include <ios ...
- 使用截图方式将Excel导出为PNG图片的不可行性
博主前面一篇文章使用了JAVA的Robot机制 模拟打开Excel然后Robot移动到指定区域,截图并生成PNG格式图片 试图使用这种方式将复杂的Excel报表转化成无差别的PNG图片 但是这种方式遇 ...
- bzoj3551 3545
我直接来讲在线好了 这是一个很巧妙的方法,把边作为一个点 做一遍最小生成树,当加如一条边时,我们把这条边两点x,y的并查集的根i,j的父亲都设为这条边代表的点k,由k向i,j连边 这样我们就构建出一棵 ...
- uva12169 Disgruntled Judge
扩展欧几里得. 枚举a,根据x1,x3和递推式可得. (a+1)*b-k*mod=f[3]-a*a*b. 通过扩展欧几里得求出b. 带入原式进行计算. #include<cstdio> # ...
- ajax上传图片 jquery插件 jquery.form.js 的方法 ajaxSubmit; AjaxForm与AjaxSubmit的差异
先引入脚本 这里最好是把jquery的脚本升级到1.7 <script src="js/jquery-1.7.js" type="text/javascript& ...
- AI 行为树
by AKara 2010-12-09 @ http://blog.csdn.net/akara @ akarachen(at)gmail.com @weibo.com/akaras 谈到游戏AI,很 ...
- liux之我用过的zip解压命令
用途说明 zip文件是一种常用的压缩文件格式,WinZip.WinRar等压缩软件都支持zip文件格式,就连java的jar包也是zip格式 的,Firefox插件xpi文件也是zip格式的.Linu ...
- 延迟加载图片的 jQuery 插件——lazyload.js
lazyload 这个 jQuery 插件,是用来缓冲加载图片的插件.如果一篇文章很长有很多图片的话,下载图片就需要很多时间.而这款插件,会检测你的滚动情况,只有你要看到那个图片的时 候,它才会从后台 ...