POJ1274 The Perfect Stall[二分图最大匹配 Hungary]【学习笔记】
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 23911 | Accepted: 10640 |
Description
Given the preferences of the cows, compute the maximum number of milk-producing assignments of cows to stalls that is possible.
Input
Output
Sample Input
5 5
2 2 5
3 2 3 4
2 1 5
3 1 2 5
1 2
Sample Output
4
Source
裸hungary
http://www.renfei.org/blog/bipartite-matching.html匹配:在图论中,一个「匹配」(matching)是一个边的集合,其中任意两条边都没有公共顶点。最大匹配:一个图所有匹配中,所含匹配边数最多的匹配,称为这个图的最大匹配。
完美匹配:如果一个图的某个匹配中,所有的顶点都是匹配点,那么它就是一个完美匹配。显然,完美匹配一定是最大匹配(完美匹配的任何一个点都已经匹配,添加一条新的匹配边一定会与已有的匹配边冲突)。但并非每个图都存在完美匹配。
交替路:从一个未匹配点出发,依次经过非匹配边、匹配边、非匹配边...形成的路径叫交替路。
增广路:从一个未匹配点出发,走交替路,如果途径另一个未匹配点(出发的点不算),则这条交替路称为增广路(agumenting path)。
最大匹配数:最大匹配的匹配边的数目
最小点覆盖数:选取最少的点,使任意一条边至少有一个端点被选择
最大独立数:选取最多的点,使任意所选两点均不相连
最小路径覆盖数:对于一个 DAG(有向无环图),选取最少条路径,使得每个顶点属于且仅属于一条路径。路径长可以为 0(即单个点)。定理1:最大匹配数 = 最小点覆盖数(这是 Konig 定理)
定理2:最大匹配数 = 最大独立数
定理3:最小路径覆盖数 = 顶点数 - 最大匹配数
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
const int N=;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
int n,m,s,u,v;
struct edge{
int v,ne;
}e[N*N<<];
int h[N],cnt=;
inline void ins(int u,int v){
cnt++;
e[cnt].v=v;e[cnt].ne=h[u];h[u]=cnt;
}
int vis[N],le[N];
bool find(int u){
for(int i=h[u];i;i=e[i].ne){
int v=e[i].v;
if(!vis[v]){
vis[v]=;
if(!le[v]||find(le[v])){
le[v]=u;
return true;
}
}
}
return false;
}
int ans=;
void hungary(){
memset(le,,sizeof(le));
for(int i=;i<=n;i++){
memset(vis,,sizeof(vis));
if(find(i)) ans++;
}
}
int main(){
while(scanf("%d%d",&n,&m)!=EOF){
cnt=;
memset(h,,sizeof(h));
for(int i=;i<=n;i++){
s=read();
while(s--){v=read();ins(i,v);}
}
ans=;
hungary();
printf("%d\n",ans);
}
}
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
const int N=;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
int n,m,s,u,v,g[N][N];
int vis[N],le[N];
bool find(int u){
for(int i=;i<=m;i++) if(g[u][i]&&!vis[i]){
vis[i]=;
if(!le[i]||find(le[i])){
le[i]=u;
return true;
}
}
return false;
}
int ans=;
void hungary(){
memset(le,,sizeof(le));
for(int i=;i<=n;i++){
memset(vis,,sizeof(vis));
if(find(i)) ans++;
}
}
int main(){
while(scanf("%d%d",&n,&m)!=EOF){
memset(g,,sizeof(g));
for(int i=;i<=n;i++){
s=read();
while(s--){v=read();g[i][v]=;}
}
ans=;
hungary();
printf("%d\n",ans);
}
}
POJ1274 The Perfect Stall[二分图最大匹配 Hungary]【学习笔记】的更多相关文章
- POJ1274 The Perfect Stall[二分图最大匹配]
The Perfect Stall Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 23911 Accepted: 106 ...
- [POJ] 1274 The Perfect Stall(二分图最大匹配)
题目地址:http://poj.org/problem?id=1274 把每个奶牛ci向它喜欢的畜栏vi连边建图.那么求最大安排数就变成求二分图最大匹配数. #include<cstdio> ...
- poj1274 The Perfect Stall (二分最大匹配)
Description Farmer John completed his new barn just last week, complete with all the latest milking ...
- POJ1274 The Perfect Stall 二分图,匈牙利算法
N头牛,M个畜栏,每头牛仅仅喜欢当中的某几个畜栏,可是一个畜栏仅仅能有一仅仅牛拥有,问最多能够有多少仅仅牛拥有畜栏. 典型的指派型问题,用二分图匹配来做,求最大二分图匹配能够用最大流算法,也能够用匈牙 ...
- POJ1274 The Perfect Stall【二部图最大匹配】
主题链接: id=1274">http://poj.org/problem? id=1274 题目大意: 有N头奶牛(编号1~N)和M个牛棚(编号1~M). 每头牛仅仅可产一次奶.每一 ...
- POJ1274 The Perfect Stall
The Perfect Stall Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 25739 Accepted: 114 ...
- POJ1274_The Perfect Stall(二部图最大匹配)
解决报告 http://blog.csdn.net/juncoder/article/details/38136193 id=1274">题目传送门 题意: n头m个机器,求最大匹配. ...
- 洛谷P1894 [USACO4.2]完美的牛栏The Perfect Stall(二分图)
P1894 [USACO4.2]完美的牛栏The Perfect Stall 题目描述 农夫约翰上个星期刚刚建好了他的新牛棚,他使用了最新的挤奶技术.不幸的是,由于工程问题,每个牛栏都不一样.第一个星 ...
- poj--1274--The Perfect Stall(最大匹配)
The Perfect Stall Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 21665 Accepted: 973 ...
随机推荐
- unity常用小知识点
感觉自己抑郁变得更严重了,超级敏感,经常想崩溃大哭,睡眠超差,实在不想药物治疗,多看看书,多约约朋友,多出去走走. 来几句鸡汤吧,人一定要活得明白一点,任何关系都不要不清不楚,说不定最后受伤的就是自个 ...
- LAMP平台-wordpress的搭建
LAMP平台-wordpress的搭建 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. Linux+Apache+Mysql/MariaDB+Perl/PHP/Python一组常用来 ...
- 单字节编码&双字节编码
单字节编码(WINDOWS-1252.ISO-8859-1.UTF-8) 双字节编码(UTF-16) Windows 记事本默认会将文件保存为单字节的 ANSI(ASCII).如果您选择 " ...
- 第一、介绍Canvas
canvas能做什么? canvas是HTML5中的新元素,你可以使用javascript用它来绘制图形.图标.以及其它任何视觉性图像.它也可用于创建图片特效和动画.如果你掌握了完整的命令,你可以用c ...
- 从零开始编写自己的JavaScript框架(一)
1. 模块的定义和加载 1.1 模块的定义 一个框架想要能支撑较大的应用,首先要考虑怎么做模块化.有了内核和模块加载系统,外围的模块就可以一个一个增加.不同的JavaScript框架,实现模块化方式各 ...
- Javascript中与Scroll有关的方法
这块确实太乱了,被兼容搞的简直快要晕死,默默地总结下... 与scroll相关的方法 4个window对象下:scrollX.scrollY.scrollTo.scroll(作用和scrollTo一样 ...
- 20155226 2016-2017-2 《Java程序设计》第6周学习总结
20155226 2016-2017-2 <Java程序设计>第6周学习总结 教材学习内容总结 第十章 输入/输出 10.1 InputStream与OutputStream 1 . 串流 ...
- ACM数据对拍程序
#include<cstdio> #include<cstdlib> #include<ctime> int main() { long s,t; while(1) ...
- Java练习之使用StringBuilder
package string.demo; /* * 将数组变为字符串输出 */ public class StringBuilderTest { /** * @param args */ public ...
- 优化MySQL的21个建议 – MySQL Life【转】
今天一个朋友向我咨询怎么去优化 MySQL,我按着思维整理了一下,大概粗的可以分为21个方向. 还有一些细节东西(table cache, 表设计,索引设计,程序端缓存之类的)先不列了,对一个系统,初 ...