The Perfect Stall
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 23911   Accepted: 10640

Description

Farmer John completed his new barn just last week, complete with all the latest milking technology. Unfortunately, due to engineering problems, all the stalls in the new barn are different. For the first week, Farmer John randomly assigned cows to stalls, but it quickly became clear that any given cow was only willing to produce milk in certain stalls. For the last week, Farmer John has been collecting data on which cows are willing to produce milk in which stalls. A stall may be only assigned to one cow, and, of course, a cow may be only assigned to one stall. 
Given the preferences of the cows, compute the maximum number of milk-producing assignments of cows to stalls that is possible. 

Input

The input includes several cases. For each case, the first line contains two integers, N (0 <= N <= 200) and M (0 <= M <= 200). N is the number of cows that Farmer John has and M is the number of stalls in the new barn. Each of the following N lines corresponds to a single cow. The first integer (Si) on the line is the number of stalls that the cow is willing to produce milk in (0 <= Si <= M). The subsequent Si integers on that line are the stalls in which that cow is willing to produce milk. The stall numbers will be integers in the range (1..M), and no stall will be listed twice for a given cow.

Output

For each case, output a single line with a single integer, the maximum number of milk-producing stall assignments that can be made.

Sample Input

5 5
2 2 5
3 2 3 4
2 1 5
3 1 2 5
1 2

Sample Output

4

Source


裸hungary
算法思想就是不停假设一个点是未盖点然后找增广路
贴一些知识
http://www.renfei.org/blog/bipartite-matching.html
 
匹配:在图论中,一个「匹配」(matching)是一个边的集合,其中任意两条边都没有公共顶点。

最大匹配:一个图所有匹配中,所含匹配边数最多的匹配,称为这个图的最大匹配。

完美匹配:如果一个图的某个匹配中,所有的顶点都是匹配点,那么它就是一个完美匹配。显然,完美匹配一定是最大匹配(完美匹配的任何一个点都已经匹配,添加一条新的匹配边一定会与已有的匹配边冲突)。但并非每个图都存在完美匹配。

交替路:从一个未匹配点出发,依次经过非匹配边、匹配边、非匹配边...形成的路径叫交替路。

增广路:从一个未匹配点出发,走交替路,如果途径另一个未匹配点(出发的点不算),则这条交替路称为增广路(agumenting path)。

最大匹配数:最大匹配的匹配边的数目
最小点覆盖数:选取最少的点,使任意一条边至少有一个端点被选择
最大独立数:选取最多的点,使任意所选两点均不相连
最小路径覆盖数:对于一个 DAG(有向无环图),选取最少条路径,使得每个顶点属于且仅属于一条路径。路径长可以为 0(即单个点)。

定理1:最大匹配数 = 最小点覆盖数(这是 Konig 定理)
定理2:最大匹配数 = 最大独立数
定理3:最小路径覆盖数 = 顶点数 - 最大匹配数

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
const int N=;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
int n,m,s,u,v;
struct edge{
int v,ne;
}e[N*N<<];
int h[N],cnt=;
inline void ins(int u,int v){
cnt++;
e[cnt].v=v;e[cnt].ne=h[u];h[u]=cnt;
}
int vis[N],le[N];
bool find(int u){
for(int i=h[u];i;i=e[i].ne){
int v=e[i].v;
if(!vis[v]){
vis[v]=;
if(!le[v]||find(le[v])){
le[v]=u;
return true;
}
}
}
return false;
}
int ans=;
void hungary(){
memset(le,,sizeof(le));
for(int i=;i<=n;i++){
memset(vis,,sizeof(vis));
if(find(i)) ans++;
}
}
int main(){
while(scanf("%d%d",&n,&m)!=EOF){
cnt=;
memset(h,,sizeof(h));
for(int i=;i<=n;i++){
s=read();
while(s--){v=read();ins(i,v);}
}
ans=;
hungary();
printf("%d\n",ans);
}
}
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
const int N=;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
int n,m,s,u,v,g[N][N];
int vis[N],le[N];
bool find(int u){
for(int i=;i<=m;i++) if(g[u][i]&&!vis[i]){
vis[i]=;
if(!le[i]||find(le[i])){
le[i]=u;
return true;
}
}
return false;
}
int ans=;
void hungary(){
memset(le,,sizeof(le));
for(int i=;i<=n;i++){
memset(vis,,sizeof(vis));
if(find(i)) ans++;
}
}
int main(){
while(scanf("%d%d",&n,&m)!=EOF){
memset(g,,sizeof(g));
for(int i=;i<=n;i++){
s=read();
while(s--){v=read();g[i][v]=;}
}
ans=;
hungary();
printf("%d\n",ans);
}
}
 
 
 
 
 
 
 
 
 
 

POJ1274 The Perfect Stall[二分图最大匹配 Hungary]【学习笔记】的更多相关文章

  1. POJ1274 The Perfect Stall[二分图最大匹配]

    The Perfect Stall Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 23911   Accepted: 106 ...

  2. [POJ] 1274 The Perfect Stall(二分图最大匹配)

    题目地址:http://poj.org/problem?id=1274 把每个奶牛ci向它喜欢的畜栏vi连边建图.那么求最大安排数就变成求二分图最大匹配数. #include<cstdio> ...

  3. poj1274 The Perfect Stall (二分最大匹配)

    Description Farmer John completed his new barn just last week, complete with all the latest milking ...

  4. POJ1274 The Perfect Stall 二分图,匈牙利算法

    N头牛,M个畜栏,每头牛仅仅喜欢当中的某几个畜栏,可是一个畜栏仅仅能有一仅仅牛拥有,问最多能够有多少仅仅牛拥有畜栏. 典型的指派型问题,用二分图匹配来做,求最大二分图匹配能够用最大流算法,也能够用匈牙 ...

  5. POJ1274 The Perfect Stall【二部图最大匹配】

    主题链接: id=1274">http://poj.org/problem? id=1274 题目大意: 有N头奶牛(编号1~N)和M个牛棚(编号1~M). 每头牛仅仅可产一次奶.每一 ...

  6. POJ1274 The Perfect Stall

    The Perfect Stall Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 25739   Accepted: 114 ...

  7. POJ1274_The Perfect Stall(二部图最大匹配)

    解决报告 http://blog.csdn.net/juncoder/article/details/38136193 id=1274">题目传送门 题意: n头m个机器,求最大匹配. ...

  8. 洛谷P1894 [USACO4.2]完美的牛栏The Perfect Stall(二分图)

    P1894 [USACO4.2]完美的牛栏The Perfect Stall 题目描述 农夫约翰上个星期刚刚建好了他的新牛棚,他使用了最新的挤奶技术.不幸的是,由于工程问题,每个牛栏都不一样.第一个星 ...

  9. poj--1274--The Perfect Stall(最大匹配)

    The Perfect Stall Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 21665   Accepted: 973 ...

随机推荐

  1. vue axios的使用

    详细可以看:https://www.kancloud.cn/yunye/axios/234845 这里介绍日常使用得比较多的get和post: import axios from 'axios' // ...

  2. 函数和常用模块【day05】:生成器并行计算(五)

    本节内容 1.概述 2.生成器执行原理 3.send()和__next__()方法的区别 4.yield实现并行效果 一.概述 之前只是介绍生成器,那有些同学就说了,这个生成器除了能节省资源,提高工作 ...

  3. 浅说搜索引擎和SEO

    搜索引擎 基本工作原理 信息收集功能 技术点SEO优化核心 优化重点 SEO优化 网站URL title信息 meta信息 图片ALT flash信息 frame框架 网页重要度特征 之前有看到一个师 ...

  4. Spark记录-spark与storm比对与选型(转载)

    大数据实时处理平台市场上产品众多,本文着重讨论spark与storm的比对,最后结合适用场景进行选型. 一.spark与storm的比较 比较点 Storm Spark Streaming 实时计算模 ...

  5. li分两列显示

    只要控制了li的宽度,利用浮动就能实现<style type="text/css"> .my ul { width: 210px; } .my li { width: ...

  6. idea-plugin

    codehelper.generator https://github.com/zhengjunbase/codehelper.generator?id=5f5b0005-11fb-48e4-bdb7 ...

  7. Apache+jboss群集优化

    故障现象: 俩台服务器jboss做的Apache群集,之前优先访问A,造成大量session都在A上有报警. 调整 调整Apache 配置jboss集群参数,将Node2的worker.node2.l ...

  8. 【译】ASP.NET Identity Core 从零开始

    原文出自Rui Figueiredo的博客,原文链接<ASP.NET Identity Core From Scratch> 译者注:这篇博文发布时正值Asp.Net Core 1.1 时 ...

  9. centos6.5环境DNS-本地DNS主从服务器bind的搭建

    centos6.5环境DNS-本地DNS主从服务器bind的搭建 在上一篇博客中我已经搭建好了一个本地DNS服务器,能够实现正向反向解析,那么我们只需要加入一台从DNS服务器即可完成,我们来开始配置主 ...

  10. 2017-2018-2 20155225《网络对抗技术》实验一 PC平台逆向破解

    2017-2018-2 20155225<网络对抗技术>实验一 PC平台逆向破解 1.直接修改程序机器指令,改变程序执行流程 理清思路: 我们的目标文件是一个linux可执行文件,格式为E ...