Codeforces.997C.Sky Full of Stars(容斥 计数)
\(Description\)
给定\(n(n\leq 10^6)\),用三种颜色染有\(n\times n\)个格子的矩形,求至少有一行或一列格子同色的方案数。
\(Solution\)
求恰好有多少行/列满足同色不好求,但如果某几行/列已经确定同色,这些行/列外任意选择,即至少多少行/列满足,那么很好求。
容斥。设\(f(i,j)\)表示至少有\(i\)行\(j\)列同色的方案数,则\(ans=\sum_{0\leq i\leq n}\sum_{0\leq j\leq n}\left[i+j>0\right]C_n^iC_n^j(-1)^{i+j+1}f(i,j)\)
当\(i>0\&\&j>0\)时,可以发现这\(i\)行\(j\)列都是同色的,即\(f(i,j)=3\times 3^{(n-i)(n-j)}\)
而当\(i=0||j=0\)时,假设\(i=0\),那么这\(j\)列间可任意组合,即\(f(0,j)=3^j\times 3^{n\times(n-j)}\)
后者可以\(O(n\log n)\)计算,而前者至少需要\(O(n^2)\)。
再化式子,令\(i=n-i,j=n-j\),则\(i,j\neq 0\)时,$$\begin{aligned}ans&=3\sum_{i=0}{n-1}\sum_{j=0}{n-1}C_n{n-i}C_n{n-j}(-1){2n-i-j-1}3{ij}\&=3\sum_{i=0}{n-1}\sum_{j=0}{n-1}C_niC_nj(-1){i+j+1}3{ij}\end{aligned}$$
把\(i\)提出来,看能不能直接算\(j\):$$\begin{aligned}ans&=3\sum_{i=0}{n-1}C_ni(-1){i+1}\sum_{j=0}{n-1}C_nj(-1)j(3i)j\&=3\sum_{i=0}{n-1}C_ni(-1){i+1}\sum_{j=0}{n-1}C_nj(-3i)^j\end{aligned}$$
由二项式定理\((a+b)^n=\sum_{k=0}^nC_n^ka^kb^{n-k}\),\(j\)的那一项可以直接化掉:$$ans=3\sum_{i=0}{n-1}C_ni(-1){i+1}\left[(1+(-3i))n-(-3i)^n\right]$$
于是就可以\(O(n\log n)\)计算了。
还有一个社会人的做法:https://www.cnblogs.com/Menhera/p/9277516.html
//1107ms 7700KB
#include <cstdio>
#include <algorithm>
#define mod (998244353)
typedef long long LL;
const int N=1e6+7;
int C[N],inv[N];
inline LL FP(LL x,int k)
{
LL t=1;
for(; k; k>>=1,x=x*x%mod)
if(k&1) t=t*x%mod;
return t;
}
int main()
{
int n; scanf("%d",&n);
LL ans1=0; C[0]=inv[1]=1;
for(int i=1; i<=n; ++i)
{
if(i>1) inv[i]=1ll*(mod-mod/i)*inv[mod%i]%mod;
C[i]=1ll*(n-i+1)*C[i-1]%mod*inv[i]%mod;
if(i&1) ans1+=1ll*C[i]*FP(3,(1ll*n*(n-i)+i)%(mod-1))%mod;//a^{\varphi(p)}=1(\mod p)
else ans1-=1ll*C[i]*FP(3,(1ll*n*(n-i)+i)%(mod-1))%mod;
}
ans1=2ll*ans1%mod;
LL ans2=0;
for(int i=0,pw3=1; i<n; ++i)
{
if(i&1) ans2+=1ll*C[i]*(FP(1+mod-pw3,n)-FP(mod-pw3,n))%mod;
else ans2-=1ll*C[i]*(FP(1+mod-pw3,n)-FP(mod-pw3,n))%mod;
pw3=3ll*pw3%mod;
}
printf("%I64d\n",((ans1+3ll*ans2)%mod+mod)%mod);
return 0;
}
Codeforces.997C.Sky Full of Stars(容斥 计数)的更多相关文章
- codeforces 997C.Sky Full of Stars
题目链接:codeforces 997C.Sky Full of Stars 一道很简单(?)的推式子题 直接求显然不现实,我们考虑容斥 记\(f(i,j)\)为该方阵中至少有\(i\)行和\(j\) ...
- [Codeforces 997C]Sky Full of Stars(排列组合+容斥原理)
[Codeforces 997C]Sky Full of Stars(排列组合+容斥原理) 题面 用3种颜色对\(n×n\)的格子染色,问至少有一行或一列只有一种颜色的方案数.\((n≤10^6)\) ...
- Codeforces 1553I - Stairs(分治 NTT+容斥)
Codeforces 题面传送门 & 洛谷题面传送门 u1s1 感觉这道题放到 D1+D2 里作为 5250 分的 I 有点偏简单了吧 首先一件非常显然的事情是,如果我们已知了排列对应的阶梯序 ...
- codeforces B. Friends and Presents(二分+容斥)
题意:从1....v这些数中找到c1个数不能被x整除,c2个数不能被y整除! 并且这c1个数和这c2个数没有相同的!给定c1, c2, x, y, 求最小的v的值! 思路: 二分+容斥,二分找到v的值 ...
- Codeforces 439E Devu and Birthday Celebration 容斥
Devu and Birthday Celebration 我们发现不合法的整除因子在 m 的因子里面, 然后枚举m的因子暴力容斥, 或者用莫比乌斯系数容斥. #include<bits/std ...
- Codeforces 920G List Of Integers 二分 + 容斥
题目链接 题意 给定 \(x,p,k\),求大于 \(x\) 的第 \(k\) 个与 \(p\) 互质的数. 思路 参考 蒟蒻JHY. 二分答案 \(y\),再去 \(check\) 在 \([x,y ...
- Codeforces 548E(莫反、容斥)
转化为质数域上的操作,如果用莫反的话,记录因数的cnt. 其实莫反的推式子最后和容斥做法殊途同归了,容斥的系数就是莫比乌斯函数. const int maxn = 2e5 + 5, maxa = 5e ...
- Codeforces Round 450 D 隔板法+容斥
题意: Count the number of distinct sequences a1, a2, ..., an (1 ≤ ai) consisting of positive integers ...
- 数学(容斥计数):LNOI 2016 方
Description 上帝说,不要圆,要方,于是便有了这道题.由于我们应该方,而且最好能够尽量方,所以上帝派我们来找正方形 上帝把我们派到了一个有N行M列的方格图上,图上一共有(N+1)×(M+1) ...
随机推荐
- dedecms织梦列表页调用TAG标签并带上链接的实现方法
在需要调用的地方添加如下代码: [field:id runphp='yes'] global $cfg_cmspath; $tags = GetTags(@me); $revalue = ''; $t ...
- 作业:JavaScript(数组篇-poker)给我的徒弟出个题。。。记得早点写完,然后大家3人可以早点打牌了
吐槽一下:“今天实际上我左思右想,写个什么东西好呢!手上的笔转了半天....最后还是给自己留点余地!看着他们什么酒店管理系统,呼叫中心系统之类的....简直是把自己固定死了!感觉一撸到底的感觉!!!我 ...
- [转载]AngularJS之Factory vs Service vs Provider
http://www.oschina.net/translate/angularjs-factory-vs-service-vs-provider http://tylermcginnis.com/a ...
- Web性能优化系列(3):如何延迟加载JS
本文由 伯乐在线 - J.c 翻译,sunbiaobiao 校稿.未经许可,禁止转载!英文出处:www.feedthebot.com.欢迎加入翻译小组. 延迟加载JavaScript JavaScri ...
- Angular 下的 directive (part 2)
ngCloak ngCloak指令被使用在,阻止angular模板从浏览器加载的时候出现闪烁的时候.使用它可以避免闪烁问题的出现. 该指令可以应用于<body>元素,但首选使用多个ng ...
- Python实现网页截图(PyQT5)
方案说明 功能要求:实现网页加载后将页面截取成长图片涉及模块:PyQT5 PIL逻辑说明: 1:完成窗口设置,利用PyQT5 QWebEngineView加载网页地址,待网页加载完成后,调用check ...
- linux下热插拔事件的产生是怎样通知到用户空间,kobject_uevent_env之uevent【转】
转自:http://blog.csdn.net/myarrow/article/details/8259888 1.kobject, ktype, kset 1) kobject: 代表sysfs中的 ...
- 2012 Dhaka
2012 Dhaka B - Wedding of Sultan 题目描述:给出一棵树的\(dfs\)序(只要经过就会记录),求每个点的度 solution 按\(dfs\)序的规则还原这棵树就好了. ...
- 由time.tzname返回值引发的对str、bytes转换时编码问题实践
Windows 10家庭中文版,Python 3.6.4, 下午复习了一下time模块,熟悉一下其中的各种时间格式的转换:时间戳浮点数.struct_tm.字符串,还算顺利. 可是,测试其中的time ...
- device-pixel-radio
移动web开发之像素和DPR 今天看到一个面试题,为iphone6s的自适应,答案是@media(min-device-width:414px) and(max-device-width:736px) ...