bzoj3744 Gty的妹子序列
感觉这题还是不错的……虽然其实算是比较水的题= =
首先分块,令f[i][j]表示第i块到第j块的逆序对数,询问的时候直接计算不完整块与完整块以及不完整块之间的逆序对。
不完整块之间的逆序对直接树状数组暴力求,至于不完整块和完整块的逆序对,我是令s[i]表示前i块的权值前缀和,这样单次查询O(1),可以减小一点常数,代价是空间稍微费了点……
预处理O(nsqrt(n)logn),单次查询O(sqrt(n)logn),空间O(nsqrt(n)),好吧我懒得算如何调节块大小来降低复杂度了,于是就随便找了个233当的块大小= =
细节并不多,然而因为各种脑残错误调了半天才敢交,又因为没看见要离散化和没加强制在线RE两次,真是废了……
/**************************************************************
Problem: 3744
User: hzoier
Language: C++
Result: Accepted
Time:9688 ms
Memory:49700 kb
****************************************************************/ #include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=,B=,maxb=;
void add(int,int);
int query(int);
int a[maxn],b[maxn],id[maxn],L[maxb]={},R[maxb]={},cntb,f[maxb][maxb]={{}},s[maxb][maxn]={{}},c[maxn]={};
int n,m,l,r,lb,rb,ans=;
int main(){
scanf("%d",&n);
for(int i=;i<=n;i++){
scanf("%d",&a[i]);
cntb=id[i]=(i-)/B+;
if(!L[id[i]])L[id[i]]=i;
R[id[i]]=i;
}
copy(a+,a+n+,b+);
sort(b+,b+n+);
for(int i=;i<=n;i++)s[id[i]][a[i]=lower_bound(b+,b+n+,a[i])-b]++;
for(int i=;i<=cntb;i++){
for(int j=;j<=n;j++)s[i][j]+=s[i-][j];
for(int j=i;j<=cntb;j++){
for(int k=L[j];k<=R[j];k++){
f[i][j]+=query(a[k]+);
add(a[k],);
}
f[i][j]+=f[i][j-];
}
memset(c,,sizeof(c));
}
for(int i=;i<=cntb;i++)for(int j=;j<=n;j++)s[i][j]+=s[i][j-];
scanf("%d",&m);
while(m--){
scanf("%d%d",&l,&r);
l^=ans;r^=ans;
if(id[l]>=id[r]-){
ans=;
for(int i=l;i<=r;i++){
ans+=query(a[i]+);
add(a[i],);
}
for(int i=l;i<=r;i++)add(a[i],-);
}
else{
lb=id[l]+;rb=id[r]-;
ans=f[lb][rb];
for(int i=l;i<L[lb];i++){
ans+=query(a[i]+)+s[rb][a[i]-]-s[lb-][a[i]-];
add(a[i],);
}
for(int i=R[rb]+;i<=r;i++){
ans+=query(a[i]+)+(s[rb][n]-s[rb][a[i]])-(s[lb-][n]-s[lb-][a[i]]);
add(a[i],);
}
for(int i=l;i<L[lb];i++)add(a[i],-);
for(int i=R[rb]+;i<=r;i++)add(a[i],-);
}
printf("%d\n",ans);
}
return ;
}
void add(int x,int d){
while(x){
c[x]+=d;
x&=x-;
}
}
int query(int x){
int ans=;
while(x<=n){
ans+=c[x];
x+=x&-x;
}
return ans;
}
bzoj3744 Gty的妹子序列的更多相关文章
- 【分块】【树状数组】bzoj3744 Gty的妹子序列
离散化,分块. 预处理出:ans[i][j] 第i块到第j块的逆序对数. f[i][j] 第1~i块中大于j的数的个数. g[i][j] 第1~j块中小于j的数的个数. 每次询问时对于整块部分可以O( ...
- BZOJ3744 Gty的妹子序列(分块+树状数组)
题意 询问区间内逆序对数 强制在线 1<=n<=50000 1<=m<=50000 题解 两个预处理f[i][j]为块i到j的逆序对数,s[i][j]前i块≤j的有多少个边角 ...
- bzoj3744: Gty的妹子序列 (BIT && 分块)
强制在线的区间询问逆序对数 如果不是强制在线 就是可以用莫队乱搞啦 强制在线的话 用f[i][j]记录第i块到第j个点之间的逆序对数 用s[i][j]记录前i块中小于等于j的数字个数 离散化一下 BI ...
- 【BZOJ3744】Gty的妹子序列 分块+树状数组
[BZOJ3744]Gty的妹子序列 Description 我早已习惯你不在身边, 人间四月天 寂寞断了弦. 回望身后蓝天, 跟再见说再见…… 某天,蒟蒻Autumn发现了从 Gty的妹子树(bzo ...
- bzoj 3744: Gty的妹子序列 主席树+分块
3744: Gty的妹子序列 Time Limit: 15 Sec Memory Limit: 128 MBSubmit: 101 Solved: 34[Submit][Status] Descr ...
- BZOJ 3744 Gty的妹子序列 (分块 + BIT)
3744: Gty的妹子序列 Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 1931 Solved: 570[Submit][Status][Dis ...
- BZOJ 3744: Gty的妹子序列 【分块 + 树状数组 + 主席树】
任意门:https://www.lydsy.com/JudgeOnline/problem.php?id=3744 3744: Gty的妹子序列 Time Limit: 20 Sec Memory ...
- 【bzoj3744】Gty的妹子序列 分块+树状数组+主席树
题目描述 我早已习惯你不在身边, 人间四月天 寂寞断了弦. 回望身后蓝天, 跟再见说再见…… 某天,蒟蒻Autumn发现了从 Gty的妹子树(bzoj3720) 上掉落下来了许多妹子,他发现 她们排成 ...
- BZOJ 3744 Gty的妹子序列
Description 我早已习惯你不在身边, 人间四月天 寂寞断了弦. 回望身后蓝天, 跟再见说再见-- 某天,蒟蒻Autumn发现了从 Gty的妹子树上掉落下来了许多妹子,他发现 她们排成了一个序 ...
随机推荐
- mysql中间件atlas配置使用
MySQL所在机器: 192.168.16.70(Master) 192.168.16.74(Slave) 192.168.16.72(atlas)注意:主从复制需要自行配置atlas配置使 ...
- 深入理解numpy
一.为啥需要numpy python虽然说注重优雅简洁,但它终究是需要考虑效率的.别说运行速度不是瓶颈,在科学计算中运行速度就是瓶颈. python的列表,跟java一样,其实只是一维列表.一维列表相 ...
- java 分页功能
1.分页工具类 package com.bw.shop.util; import java.util.List; import com.sun.org.apache.regexp.internal.r ...
- iTestSharp的简单应用
前言 最近公司某项目要针对一些信息基础表绘画成表格的形式然后生成pdf文件,在网上寻找到iTestSharp发现此类库很强大,虽然园子里已经有很多大牛写了关于此插件的使用方法,但是自己也想写一写,把自 ...
- C#委托与事件
一.在控制台下使用委托和事件 我们都知道,C#中有"接口"这个概念,所谓的"接口"就是定义一套标准,然后由实现类来具体实现其中的方法,所以说"接口,是 ...
- xv6课本翻译之——第0章 操作系统接口
Chapter 0 第0章 Operating system interfaces 操作系统接口 The job of an operating system is to share a comput ...
- Android 轮换页面+TabHost 实例
最终效果展示: 首先我们需要一个ViewPager控件,不过可以发现在左侧的控件列表中并没有这个控件 这时我们要去升级包中查看 然后在厘米找到 ViewPager.class 这时我们双击这个发现不能 ...
- Downgrade PHP 7 to PHP 5.6 on Ubuntu 16.04
Downgrade PHP 7 to PHP 5.6 on Ubuntu ubuntu16.04 系统源自带是7.0的,如何降级安装PHP 5.6呢 .? apt-get install -y lan ...
- iOS 开发总结(上)
来源:蝴蝶之梦天使 链接:http://www.jianshu.com/p/d333cf6ae4b0 在iOS开发中经常需要使用的或不常用的知识点的总结,几年的收藏和积累(踩过的坑). 一. iPho ...
- linux 7z 命令编译安装
7zip是一个开源的压缩软件 7z格式是压缩率最高的格式 服务器备份 数据几个g 要是tar压缩下载的话 时间太长 7zip压缩出来体积很小 首先安装 我这是 centos的 直接可以 yum ...