题解

简单分析一下,如果这个选手成绩是0,直接输出\(\binom{n}{k}\)

如果这个选手的成绩没有被翻倍,那么找到大于等于它的数(除了它自己)有a个,翻倍后不大于它的数有b个,那么就从这\(a + b\)个选手里找翻倍选手使得它排名不变

答案是\(\binom{a + b}{K}\)

如果这个选手成绩翻倍了,那么大于等于它的所有数,依旧大于它的有\(c\)个,然后剩余\(a - c\)个必须翻倍,剩下的翻不翻倍随意,所以答案是

\(\binom{N - (a - c) - 1}{K - (a - c) - 1}\)

代码

#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define pdi pair<db,int>
#define mp make_pair
#define pb push_back
#define enter putchar('\n')
#define space putchar(' ')
#define eps 1e-8
#define mo 974711
#define MAXN 100005
//#define ivorysi
using namespace std;
typedef long long int64;
typedef double db;
template<class T>
void read(T &res) {
res = 0;char c = getchar();T f = 1;
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 + c - '0';
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {x = -x;putchar('-');}
if(x >= 10) {
out(x / 10);
}
putchar('0' + x % 10);
}
const int MOD = 998244353;
int N,K,A[MAXN],val[MAXN];
int fac[MAXN],invfac[MAXN];
int inc(int a,int b) {
return a + b >= MOD ? a + b - MOD : a + b;
}
int mul(int a,int b) {
return 1LL * a * b % MOD;
}
int fpow(int x,int c) {
int res = 1,t = x;
while(c) {
if(c & 1) res = mul(res,t);
t = mul(t,t);
c >>= 1;
}
return res;
}
int C(int n,int m) {
if(n < 0 || m < 0) return 0;
if(n < m) return 0;
return mul(fac[n],mul(invfac[n - m],invfac[m]));
}
void Solve() {
read(N);read(K);
for(int i = 1 ; i <= N ; ++i) {read(A[i]);val[i] = A[i];}
sort(val + 1,val + N + 1);
fac[0] = 1;
for(int i = 1 ; i <= N ; ++i) fac[i] = mul(fac[i - 1],i);
invfac[N] = fpow(fac[N],MOD - 2);
for(int i = N - 1 ; i >= 0 ; --i) invfac[i] = mul(invfac[i + 1],i + 1);
for(int i = 1 ; i <= N ; ++i) {
if(A[i] == 0) {out(C(N,K));enter;continue;}
int res = 0;
int t = lower_bound(val + 1,val + N + 1,A[i]) - val;
int s = lower_bound(val + 1,val + N + 1,A[i] % 2 == 0 ? A[i] / 2 : A[i] / 2 + 1) - val - 1;
res = inc(res,C(N - t + s,K));
int h = lower_bound(val + 1,val + N + 1,2 * A[i]) - val;
h = N - h + 1;
int d = N - t - h;
res = inc(res,C(N - 1 - d,K - 1 - d));
out(res);enter;
}
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
Solve();
}

【LOJ】#6432. 「PKUSC2018」真实排名的更多相关文章

  1. LOJ #6432. 「PKUSC2018」真实排名(组合数)

    题面 LOJ #6432. 「PKUSC2018」真实排名 注意排名的定义 , 分数不小于他的选手数量 !!! 题解 有点坑的细节题 ... 思路很简单 , 把每个数分两种情况讨论一下了 . 假设它为 ...

  2. Loj 6432. 「PKUSC2018」真实排名 (组合数)

    题面 Loj 题解 枚举每一个点 分两种情况 翻倍or不翻倍 \(1.\)如果这个点\(i\)翻倍, 要保持排名不变,哪些必须翻倍,哪些可以翻倍? 必须翻倍: \(a[i] \leq a[x] < ...

  3. LOJ 6432 「PKUSC2018」真实排名——水题

    题目:https://loj.ac/problem/6432 如果不选自己,设自己的值是 x ,需要让 “ a<x && 2*a>=x ” 的非 x 的值不被选:如果选自己 ...

  4. Loj#6432「PKUSC2018」真实排名(二分查找+组合数)

    题面 Loj 题解 普通的暴力是直接枚举改或者不改,最后在判断最后对哪些点有贡献. 而这种方法是很难优化的.所以考虑在排序之后线性处理.首先先假设没有重复的元素 struct Node { int p ...

  5. LOJ #6432. 「PKUSC2018」真实排名

    题目在这里...... 对于这道题,现场我写炸了......谁跟我说组合数O(n)的求是最快的?(~!@#¥¥%……& #include <cstdio> #include < ...

  6. #6432. 「PKUSC2018」真实排名(组合数学)

    题面 传送门 题解 这数据范围--这输出大小--这模数--太有迷惑性了-- 首先对于\(0\)来说,不管怎么选它们的排名都不会变,这个先特判掉 对于一个\(a_i\)来说,如果它不选,那么所有大于等于 ...

  7. 「PKUSC2018」真实排名(排列组合,数学)

    前言 为什么随机跳题会跳到这种题目啊? Solution 我们发现可以把这个东西分情况讨论: 1.这个点没有加倍 这一段相同的可以看成一个点,然后后面的都可以. 这一段看成一个点,然后前面的不能对他造 ...

  8. 「PKUSC2018」真实排名(组合)

    一道不错的组合数问题! 分两类讨论: 1.\(a_i\) 没有翻倍,那些 \(\geq a_i\) 和 \(a_j\times 2<a_i\) 的数就没有影响了.设 \(kth\) 为 \(a_ ...

  9. 「PKUSC2018」真实排名

    题面 题解 因为操作为将一些数字翻倍, 所以对于一个数\(x\), 能影响它的排名的的只有满足\(2y\geq x\)或\(2x>y\)的\(y\) 将选手的成绩排序,然后考虑当前点的方案 1. ...

随机推荐

  1. (NOI2014)(bzoj3669)魔法森林

    LCT裸题,不会的可以来这里看看. 步入正题,现将边按a排序,依次加入每一条边,同时维护路径上的最小生成树上的最大边权,如果两点不连通,就直接连通. 如果两点已经连通,就将该边与路径上较小的一条比较, ...

  2. 学习Spring Boot:(十八)Spring Boot 中session共享

    前言 前面我们将 Redis 集成到工程中来了,现在需要用它来做点实事了.这次为了解决分布式系统中的 session 共享的问题,将 session 托管到 Redis. 正文 引入依赖 除了上篇文章 ...

  3. IntelliJ IDEA的安装和使用教程

    1. 安装IntelliJ IDEA IntelliJ IDEA(简称"IDEA")是Java语言的集成开发环境,它是JetBrains公司的产品之一.详情请看:JetBrains ...

  4. Nginx反向代理下IIS获取真实IP

    1. iis 如果放在反向代理后面,日志里的c-ip是反向代理服务器的ip,不是真正用户的ip,想要记录用户的ip要做两件事. 一.在反向代理设置X-Forwarded-For段,以下为nginx下的 ...

  5. Docker 镜像加速器

      Docker 镜像加速器 我们使用Docker的第一步,应该是获取一个官方的镜像,例如mysql.wordpress,基于这些基础镜像我们可以开发自己个性化的应用.我们可以使用Docker命令行工 ...

  6. Excel:公式应用技巧汇总

    1.合并单元格添加序号:=MAX(A$1:A1)+1 不重复的个数: 公式1:{=SUM(1/COUNTIF(A2:A8,A2:A8))} 公式2:{=SUM(--(MATCH(A2:A8,A2:A8 ...

  7. 关于Thinkphp5类命名导致的“模块不存在”问题

    不得不说,thinkphp5就是个十足的坑货, 在thinkphp3.2.3的基础上,函数.用法变了也就忍了, 在mac下写的一个类文件 GetRedisData.php,在mac+mamp环境下是正 ...

  8. Java基础-赋值运算符Assignment Operators与条件运算符Condition Operators

    Java基础-赋值运算符Assignment Operators与条件运算符Condition Operators 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.赋值运算符 表 ...

  9. javaweb购物车实现的几种方式

    之前没有接触过购物车的东东,也不知道购物车应该怎么做,所以在查询了很多资料,总结一下购物车的功能实现. 查询的资料,找到三种方法: 1.用cookie实现购物车: 2.用session实现购物车: 3 ...

  10. TED_Topic10:The case for engineering our food

    By Pamela Ronald Pamela Ronald studies the genes that make plants more resistant to disease and stre ...