【LOJ】#2106. 「JLOI2015」有意义的字符串
题解
点一个技能点叫特征方程
就是
\(a_{n + 2} = c_1 a_{n + 1} + c_2 a_{n}\)
\(x^2 = c_1 x + c_2\)
解出两根来是\(x_1,x_2\)
通项就是
\(Ax_1^{n} + Bx_2^{n}\)把第一项和第二项带入可以解出来A和B
然后为了得到通项是
\((\frac{b + \sqrt{d}}{2})^n + (\frac{b - \sqrt{d}}{2})^{n}\)的数列
那么我们让
\(c_1 = b\)
\(c_2 = \frac{d - b^2}{4}\)
矩乘算出来\(a_n\)
\((\frac{b + \sqrt{d}}{2})^n = a_n - (\frac{b - \sqrt{d}}{2})^{n}\)
由于题面里少打了四个字,【整数部分】取模,那么我们观察一下后面那部分,如果\(n\)是偶数而且\(b^2\)和\(d\)不等,那么会减1
代码
#include <bits/stdc++.h>
#define enter putchar('\n')
#define space putchar(' ')
#define pii pair<int,int>
#define fi first
#define se second
#define mp make_pair
#define pb push_back
#define eps 1e-8
//#define ivorysi
using namespace std;
typedef long long int64;
typedef unsigned long long u64;
typedef double db;
template<class T>
void read(T &res) {
res = 0;T f = 1;char c = getchar();
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 - '0' + c;
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {x = -x;putchar('-');}
if(x >= 10) out(x / 10);
putchar('0' + x % 10);
}
const u64 MOD = 7528443412579576937;
u64 inc(u64 a,u64 b) {
return a + b >= MOD ? a + b - MOD : a + b;
}
u64 mul(u64 a,u64 b) {
u64 res = 0,t = a;
while(b) {
if(b & 1) res = inc(res,t);
t = inc(t,t);
b >>= 1;
}
return res;
}
void update(u64 &x,u64 y) {
x = inc(x,y);
}
struct Matrix {
u64 f[2][2];
Matrix(){memset(f,0,sizeof(f));}
friend Matrix operator * (const Matrix &a,const Matrix &b) {
Matrix c;
for(int i = 0 ; i < 2 ; ++i) {
for(int j = 0 ; j < 2 ; ++j) {
for(int k = 0 ; k < 2 ; ++k) {
update(c.f[i][j],mul(a.f[i][k],b.f[k][j]));
}
}
}
return c;
}
}A,ans;
u64 d,b,n,Inv4,an;
void fpow(Matrix &res,Matrix &a,int64 c) {
res = a;--c;Matrix t = a;
while(c) {
if(c & 1) res = res * t;
t = t * t;
c >>= 1;
}
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
read(b);read(d);read(n);
Inv4 = mul((MOD + 1) / 2,(MOD + 1) / 2);
A.f[0][0] = b;A.f[0][1] = mul(inc(d,MOD - mul(b,b)),Inv4);
A.f[1][0] = 1;
if(n == 0) an = 2;
else if(n == 1) an = b;
else {
fpow(ans,A,n - 1);
an = inc(mul(b,ans.f[0][0]),mul(2,ans.f[0][1]));
}
if((d % b == 0 && d / b == b) || n & 1) ;
else update(an,MOD - 1);
out(an);enter;
}
【LOJ】#2106. 「JLOI2015」有意义的字符串的更多相关文章
- @loj - 2106@ 「JLOI2015」有意义的字符串
目录 @description@ @solution@ @accepted code@ @details@ @description@ B 君有两个好朋友,他们叫宁宁和冉冉.有一天,冉冉遇到了一个有趣 ...
- LOJ #6436. 「PKUSC2018」神仙的游戏(字符串+NTT)
题面 LOJ #6436. 「PKUSC2018」神仙的游戏 题解 参考 yyb 的口中的长郡最强选手 租酥雨大佬的博客 ... 一开始以为 通配符匹配 就是类似于 BZOJ 4259: 残缺的字符串 ...
- LOJ#3104「TJOI2019」甲苯先生的字符串
题目描述 一天小甲苯得到了一条神的指示,他要把神的指示写下来,但是又不能泄露天机,所以他要用一种方法把神的指示记下来. 神的指示是一个字符串,记为字符串 \(s_1\),\(s_1\) 仅包含小写字母 ...
- Loj #3059. 「HNOI2019」序列
Loj #3059. 「HNOI2019」序列 给定一个长度为 \(n\) 的序列 \(A_1, \ldots , A_n\),以及 \(m\) 个操作,每个操作将一个 \(A_i\) 修改为 \(k ...
- loj#2721. 「NOI2018」屠龙勇士
题目链接 loj#2721. 「NOI2018」屠龙勇士 题解 首先可以列出线性方程组 方程组转化为在模p意义下的同余方程 因为不保证pp 互素,考虑扩展中国剩余定理合并 方程组是带系数的,我们要做的 ...
- Loj #2719. 「NOI2018」冒泡排序
Loj #2719. 「NOI2018」冒泡排序 题目描述 最近,小 S 对冒泡排序产生了浓厚的兴趣.为了问题简单,小 S 只研究对 *\(1\) 到 \(n\) 的排列*的冒泡排序. 下面是对冒泡排 ...
- Loj #2192. 「SHOI2014」概率充电器
Loj #2192. 「SHOI2014」概率充电器 题目描述 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品--概率充电器: 「采用全新纳米级加工技术,实现元件与导线能否通电完 ...
- Loj #3096. 「SNOI2019」数论
Loj #3096. 「SNOI2019」数论 题目描述 给出正整数 \(P, Q, T\),大小为 \(n\) 的整数集 \(A\) 和大小为 \(m\) 的整数集 \(B\),请你求出: \[ \ ...
- Loj #3093. 「BJOI2019」光线
Loj #3093. 「BJOI2019」光线 题目描述 当一束光打到一层玻璃上时,有一定比例的光会穿过这层玻璃,一定比例的光会被反射回去,剩下的光被玻璃吸收. 设对于任意 \(x\),有 \(x\t ...
随机推荐
- 【刷题】LOJ 6007 「网络流 24 题」方格取数
题目描述 在一个有 \(m \times n\) 个方格的棋盘中,每个方格中有一个正整数. 现要从方格中取数,使任意 \(2\) 个数所在方格没有公共边,且取出的数的总和最大.试设计一个满足要求的取数 ...
- Mysql(四)正则表达式
一.正则表达式 1.使用like可以进行不确定的查询(模糊查询),然而,模糊 查询的功能有限,当需要进行更加复杂的模式匹配时,可以 使用正则表达式来完成. 2.正则表达式可以对指定的字符串与模式之间执 ...
- node爬虫入门
爬虫其实就是模仿浏览器访问页面,然后把页面保存起来备用. 爬虫的方法,直接上代码: function getUrl(url,success,error){ let urlObj = urlParser ...
- 用vue前后端分离项目开发记录
一:软件安装 1.1 检测node 是否安装 1.2 安装淘宝镜像 cnpm 1.3 安装vue-cli 1.4 检查是否安装vue-cli脚手架成功 1.5安装webpack 模块管理工具 二:创建 ...
- 【DS】排序算法之选择排序(Selection Sort)
一.算法思想 选择排序是一种简单直观的排序算法.它的工作原理如下: 1)将序列分成两部分,前半部分是已经排序的序列,后半部分是未排序的序列: 2)在未排序序列中找到最小(大)元素,放到已排序序列的末尾 ...
- java学习路线-从入门到入土
以下是个人学习路线,资源等我找到了 share,如果没找到请自行百度: 1.javase 观看 毕向东的 javase ,主要是老毕口才略屌,听着不容易打瞌睡,冷不丁吓你一大跳 老毕的年代久远,我已经 ...
- 【学习笔记】AspectJ笔记
AspectJ的概念 是一种静态编译期增强性AOP的实现 在编译过程中修改代码加入相关逻辑,无需程序员动手 AspectJ具体用法 下载安装AspectJ,启动jar文件,安装到JDK目录,添加pat ...
- [软件]在浏览器里添加MarkDown Here(插件)
1. 先来说说这个插件的作用是什么: 用于在网页一些编辑文本的地方, 使用MacDown编辑文本 支持大部分浏览器, https://github.com/adam-p/markdown-here ...
- Java入门系列(九)Java API
String,StringBuilder,StringBuffer三者的区别 1.首先说运行速度,或者说是执行速度 在这方面运行速度快慢为:StringBuilder > StringBuffe ...
- Git Pull Failed: cannot lock ref 'refs/remotes/origin/xxxxxxxx': unable to resolve ref
1.xxxxxxxx代表目录名称,我要pull的目录是supman_creditmall_v5: 2.从代码库中pull代码时报这个错误,代码pull失败: 3.解决办法,看下图,删除文件后再pull ...