题解

点一个技能点叫特征方程

就是

\(a_{n + 2} = c_1 a_{n + 1} + c_2 a_{n}\)

\(x^2 = c_1 x + c_2\)

解出两根来是\(x_1,x_2\)

通项就是

\(Ax_1^{n} + Bx_2^{n}\)把第一项和第二项带入可以解出来A和B

然后为了得到通项是

\((\frac{b + \sqrt{d}}{2})^n + (\frac{b - \sqrt{d}}{2})^{n}\)的数列

那么我们让

\(c_1 = b\)

\(c_2 = \frac{d - b^2}{4}\)

矩乘算出来\(a_n\)

\((\frac{b + \sqrt{d}}{2})^n = a_n - (\frac{b - \sqrt{d}}{2})^{n}\)

由于题面里少打了四个字,【整数部分】取模,那么我们观察一下后面那部分,如果\(n\)是偶数而且\(b^2\)和\(d\)不等,那么会减1

代码

#include <bits/stdc++.h>
#define enter putchar('\n')
#define space putchar(' ')
#define pii pair<int,int>
#define fi first
#define se second
#define mp make_pair
#define pb push_back
#define eps 1e-8
//#define ivorysi
using namespace std;
typedef long long int64;
typedef unsigned long long u64;
typedef double db;
template<class T>
void read(T &res) {
res = 0;T f = 1;char c = getchar();
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 - '0' + c;
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {x = -x;putchar('-');}
if(x >= 10) out(x / 10);
putchar('0' + x % 10);
}
const u64 MOD = 7528443412579576937;
u64 inc(u64 a,u64 b) {
return a + b >= MOD ? a + b - MOD : a + b;
}
u64 mul(u64 a,u64 b) {
u64 res = 0,t = a;
while(b) {
if(b & 1) res = inc(res,t);
t = inc(t,t);
b >>= 1;
}
return res;
}
void update(u64 &x,u64 y) {
x = inc(x,y);
}
struct Matrix {
u64 f[2][2];
Matrix(){memset(f,0,sizeof(f));}
friend Matrix operator * (const Matrix &a,const Matrix &b) {
Matrix c;
for(int i = 0 ; i < 2 ; ++i) {
for(int j = 0 ; j < 2 ; ++j) {
for(int k = 0 ; k < 2 ; ++k) {
update(c.f[i][j],mul(a.f[i][k],b.f[k][j]));
}
}
}
return c;
}
}A,ans;
u64 d,b,n,Inv4,an;
void fpow(Matrix &res,Matrix &a,int64 c) {
res = a;--c;Matrix t = a;
while(c) {
if(c & 1) res = res * t;
t = t * t;
c >>= 1;
}
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
read(b);read(d);read(n);
Inv4 = mul((MOD + 1) / 2,(MOD + 1) / 2);
A.f[0][0] = b;A.f[0][1] = mul(inc(d,MOD - mul(b,b)),Inv4);
A.f[1][0] = 1;
if(n == 0) an = 2;
else if(n == 1) an = b;
else {
fpow(ans,A,n - 1);
an = inc(mul(b,ans.f[0][0]),mul(2,ans.f[0][1]));
}
if((d % b == 0 && d / b == b) || n & 1) ;
else update(an,MOD - 1);
out(an);enter;
}

【LOJ】#2106. 「JLOI2015」有意义的字符串的更多相关文章

  1. @loj - 2106@ 「JLOI2015」有意义的字符串

    目录 @description@ @solution@ @accepted code@ @details@ @description@ B 君有两个好朋友,他们叫宁宁和冉冉.有一天,冉冉遇到了一个有趣 ...

  2. LOJ #6436. 「PKUSC2018」神仙的游戏(字符串+NTT)

    题面 LOJ #6436. 「PKUSC2018」神仙的游戏 题解 参考 yyb 的口中的长郡最强选手 租酥雨大佬的博客 ... 一开始以为 通配符匹配 就是类似于 BZOJ 4259: 残缺的字符串 ...

  3. LOJ#3104「TJOI2019」甲苯先生的字符串

    题目描述 一天小甲苯得到了一条神的指示,他要把神的指示写下来,但是又不能泄露天机,所以他要用一种方法把神的指示记下来. 神的指示是一个字符串,记为字符串 \(s_1\),\(s_1\) 仅包含小写字母 ...

  4. Loj #3059. 「HNOI2019」序列

    Loj #3059. 「HNOI2019」序列 给定一个长度为 \(n\) 的序列 \(A_1, \ldots , A_n\),以及 \(m\) 个操作,每个操作将一个 \(A_i\) 修改为 \(k ...

  5. loj#2721. 「NOI2018」屠龙勇士

    题目链接 loj#2721. 「NOI2018」屠龙勇士 题解 首先可以列出线性方程组 方程组转化为在模p意义下的同余方程 因为不保证pp 互素,考虑扩展中国剩余定理合并 方程组是带系数的,我们要做的 ...

  6. Loj #2719. 「NOI2018」冒泡排序

    Loj #2719. 「NOI2018」冒泡排序 题目描述 最近,小 S 对冒泡排序产生了浓厚的兴趣.为了问题简单,小 S 只研究对 *\(1\) 到 \(n\) 的排列*的冒泡排序. 下面是对冒泡排 ...

  7. Loj #2192. 「SHOI2014」概率充电器

    Loj #2192. 「SHOI2014」概率充电器 题目描述 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品--概率充电器: 「采用全新纳米级加工技术,实现元件与导线能否通电完 ...

  8. Loj #3096. 「SNOI2019」数论

    Loj #3096. 「SNOI2019」数论 题目描述 给出正整数 \(P, Q, T\),大小为 \(n\) 的整数集 \(A\) 和大小为 \(m\) 的整数集 \(B\),请你求出: \[ \ ...

  9. Loj #3093. 「BJOI2019」光线

    Loj #3093. 「BJOI2019」光线 题目描述 当一束光打到一层玻璃上时,有一定比例的光会穿过这层玻璃,一定比例的光会被反射回去,剩下的光被玻璃吸收. 设对于任意 \(x\),有 \(x\t ...

随机推荐

  1. Hello,Power BI

    Power BI 是什么 Power BI 是一套业务分析工具,用于分析数据和理解数据,快速便捷地监控数据变化,为商务决策提供依据. Power BI 有用户组的概念.分享权限等概念 Power BI ...

  2. opencv ---getRotationMatrix2D函数

    getRotationMatrix2D函数 主要用于获得图像绕着 某一点的旋转矩阵  Mat getRotationMatrix2D(Point2f center, double angle, dou ...

  3. linux ------ 硬连接和软连接(软连接也叫符号连接)

    在Linux的文件系统中,保存在磁盘分区中的文件不管是什么类型都给它分配一个编号,称为索引节点号 (Inode Index).在Linux中,多个文件名指向同一索引节点是存在的.一般这种连接就是硬连接 ...

  4. java生成棋盘

    第一步:新建java项目,具体的命名,看下面的文件结构. 第二步:代码区 DrawChessBoard类: package com.hp.chenyanlong; import java.awt.Gr ...

  5. Sql Server数据库小知识点总结

    把我在开发时候遇到的一点小知识持续更新在这里~ 1.where条件时常变 where UserID='1' 这里的UserID呢,它的值是经常在变化的,有时候要查2,有时候要查3的,有时候要查全部人! ...

  6. Kafka 0.8 NIO通信机制

    一.Kafka通信机制的整体结构 同时,这也是SEDA多线程模型. 对于broker来说,客户端连接数量有限,不会频繁新建大量连接.因此一个Acceptor thread线程处理新建连接绰绰有余. K ...

  7. 移动端网页开发 meta 之 viewport

    这几天在搞微信公众平台,涉及到几个页面要写,可是当我测试时发现和想象中不太一样,于是去找了几个页面看了下,发现他们页面头部有 meta viewport 的标签,所以去找了下网上的资料,发现千篇一律, ...

  8. 5个经典的javascript面试问题

    问题1:Scope作用范围 考虑下面的代码: (function() {   var a = b = 5;})(); console.log(b); 什么会被打印在控制台上? 回答 上面的代码会打印 ...

  9. C++的Enum hack

    从一个例子开始吧 class Game { private: static const int GameTurn = 10; int scores[GameTurn]; }; 对于支持类内初始化的C+ ...

  10. 阿里云OSS 中文名称地址不对

    oss中将该中文名称重命名.再输入一次