题意

我们用路径 \((u, v)\) 表示一棵树上从结点 \(u\) 到结点 \(v\) 的最短路径。

给定一棵由 \(n\) 个结点构成的树。你需要用 \(m\) 种不同的颜色为这棵树的树边染色,在这 \(m\) 种颜色中,第 \(i\) 种颜色有两条备选路径

\((a_i, b_i)\) 与 \((c_i, d_i)\),你的任务是判断是否存在一种合法的染色方案,使得每种颜色 \(i\) 所对应的两条备选路径中都有至少一条满足:

该路径上的所有树边的颜色均为颜色 \(i\)。若存在,输出 YES,并依次输出每种颜色所对应的两条备选路径中,哪一条是满足要求的。

若输出 1,则表示路径 \((a_i, b_i)\) 是合法的,若输出 2,则表示路径 \((c_i, d_i)\) 是合法的);若不存在,输出 NO

\(2 \leq n \leq 10^5, 1 \leq m \leq 10^4, 1 \leq a_i, b_i, c_i, d_i \leq n, a_i \neq b_i, c_i \neq b_i\)。

分析

  • 令一种颜色的两条路径互为逆命题。(如果两条边可以同时出现只出现一条一定可以满足)

  • 考虑一种暴力的做法:枚举经过一条边的所有路径,命题两两连边,这个过程可以前缀优化建图,但似乎还不够优秀。

  • 能不能更高效地将一条路径的影响记录到树上呢?容易联想到树剖,我们用树剖+线段树的方式将路径的影响加入线段树中 \({log}^2\) 个节点中并标记永久化,对线段树上每个节点的所有路径前缀优化建图。

  • 容易发现每个点(线段树上)的限制不仅来自当前节点,他的所有祖先和子树内的路径与他之间都只能选一个,所以节点的最后一个命题向两个儿子节点的第一个命题连边构成树形结构,就满足了每个点的限制。

  • 空间复杂度 \(O(m{log}^2n)\) ,时间复杂度 \(O(m{log}^2n)\)。

代码

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
#define go(i, u, v) for(int (i) = head[(u)], (v) = e[(i)].to; (i); (i)=e[(i)].lst, (v)=e[(i)].to)
#define rep(i, a, b) for(int (i) = (a); (i) <= (b); ++(i))
#define pb push_back
inline int gi() {
int x = 0,f = 1;
char ch = getchar();
while(!isdigit(ch)) {
if(ch == '-') f = -1;
ch = getchar();
}
while(isdigit(ch)) {
x = (x << 3) + (x << 1) + ch - 48;
ch = getchar();
}
return x * f;
}
template <typename T> inline void Max(T &a, T b){if(a < b) a = b;}
template <typename T> inline void Min(T &a, T b){if(a > b) a = b;}
const int N = 1e5 + 7, Nd = 6e6 + 7;
int n, edc;
int head[N], ndc;
struct edge {
int lst, to;
edge(){}edge(int lst, int to):lst(lst), to(to){}
}e[N << 1];
void Add(int a, int b) {
e[++edc] = edge(head[a], b), head[a] = edc;
e[++edc] = edge(head[b], a), head[b] = edc;
}
vector<int> G[Nd];
void lim(int a, int b) {
G[a].pb(b), G[b ^ 1].pb(a ^ 1);
}
int fa[N], in[N], dep[N], top[N], son[N], zson[N], tim;
void dfs1(int u) {
son[u] = 1;
go(i, u, v)if(v ^ fa[u]) {
dep[v] = dep[u] + 1, fa[v] = u;
dfs1(v);
son[u] += son[v];
if(son[v] > son[zson[u]]) zson[u] = v;
}
}
void dfs2(int u, int from) {
top[u] = from, in[u] = ++tim;
if(zson[u]) dfs2(zson[u], from);
go(i, u, v)if(v ^ fa[u] && v ^ zson[u]) dfs2(v, v);
}
vector<int> path[N << 2];
int L[N << 2], R[N << 2];
#define Ls o << 1
#define Rs o << 1 | 1
void modify(int L, int R, int l, int r, int o, int id) {
if(L <= l && r <= R) { path[o].pb(id); return; }
int mid = l + r >> 1;
if(L <= mid) modify(L, R, l, mid, Ls, id);
if(R > mid) modify(L, R, mid + 1, r, Rs, id);
}
void build(int l, int r, int o) {
L[o] = ++ndc, ndc += path[o].size(), R[o] = ndc;
if(o > 1) {
lim(L[o] << 1 | 1, R[o >> 1] << 1 | 1);
if(!path[o].empty()) {
int x = path[o][0];
lim(R[o >> 1] << 1, x ^ 1);
}
}
for(int i = 0; i < path[o].size(); ++i) {
int x = path[o][i];
lim(L[o] + i << 1 | 1, x ^ 1);
lim(L[o] + i + 1 << 1 | 1, L[o] + i << 1 | 1);
if(i ^ 0) lim(L[o] + i - 1 << 1, x ^ 1);
}
if(l == r) return;
int mid = l + r >> 1;
build(l, mid, Ls);
build(mid + 1, r, Rs);
}
void ins(int x, int y, int id) {
for(; top[x] ^ top[y]; y = fa[top[y]]) {
if(dep[top[x]] > dep[top[y]]) swap(x, y);
modify(in[top[y]], in[y], 1, n, 1, id);
}
if(dep[x] > dep[y]) swap(x, y);
if(x ^ y) modify(in[x] + 1, in[y], 1, n, 1, id);
}
int low[Nd], pre[Nd], st[Nd], scc[Nd], scc_cnt, tp;
void tarjan(int u) {
low[u] = pre[u] = ++tim;st[++ tp] = u;
for(auto v : G[u]) {
if(!low[v]) {
tarjan(v);
Min(pre[u], pre[v]);
}else if(!scc[v]) Min(pre[u], low[v]);
}
if(low[u] == pre[u] && ++scc_cnt)
for(int x = -1; x ^ u;)
scc[x = st[tp--]] = scc_cnt;
}
int main() {
n = gi();ndc = n;
rep(i, 1, n - 1) Add(gi(), gi());
dep[1] = 1, dfs1(1), dfs2(1, 1);
int m = gi();
rep(i, 1, m) {
int a = gi(), b = gi(), c = gi(), d = gi();
ins(a, b, i << 1);
ins(c, d, i << 1 | 1);
}
build(1, n, 1);
tim = 0;
for(int i = 1; i <= ndc * 2 + 1; ++i) if(!scc[i]) tarjan(i);
rep(i, 1, m) {
if(scc[i << 1] == scc[i << 1 | 1]) return puts("NO"), 0;
}
puts("YES");
rep(i, 1, m) {
puts(scc[i << 1] < scc[i << 1 | 1] ? "1" : "2");
}
return 0;
}

[CF1007D]Ants[2-SAT+树剖+线段树优化建图]的更多相关文章

  1. BZOJ_2238_Mst_树剖+线段树

    BZOJ_2238_Mst_树剖+线段树 Description 给出一个N个点M条边的无向带权图,以及Q个询问,每次询问在图中删掉一条边后图的最小生成树.(各询问间独立,每次询问不对之后的询问产生影 ...

  2. BZOJ_4551_[Tjoi2016&Heoi2016]树_树剖+线段树

    BZOJ_4551_[Tjoi2016&Heoi2016]树_树剖+线段树 Description 在2016年,佳媛姐姐刚刚学习了树,非常开心.现在他想解决这样一个问题:给定一颗有根树(根为 ...

  3. BZOJ_2157_旅游_树剖+线段树

    BZOJ_2157_旅游_树剖+线段树 Description Ray 乐忠于旅游,这次他来到了T 城.T 城是一个水上城市,一共有 N 个景点,有些景点之间会用一座桥连接.为了方便游客到达每个景点但 ...

  4. 【BZOJ5210】最大连通子块和 树剖线段树+动态DP

    [BZOJ5210]最大连通子块和 Description 给出一棵n个点.以1为根的有根树,点有点权.要求支持如下两种操作: M x y:将点x的点权改为y: Q x:求以x为根的子树的最大连通子块 ...

  5. [LNOI2014]LCA(树剖+线段树)

    \(\%\%\% Fading\) 此题是他第一道黑题(我的第一道黑题是蒲公英) 一直不敢开,后来发现是差分一下,将询问离线,树剖+线段树维护即可 \(Code\ Below:\) #include ...

  6. LOJ#3088. 「GXOI / GZOI2019」旧词(树剖+线段树)

    题面 传送门 题解 先考虑\(k=1\)的情况,我们可以离线处理,从小到大对于每一个\(i\),令\(1\)到\(i\)的路径上每个节点权值增加\(1\),然后对于所有\(x=i\)的询问查一下\(y ...

  7. BZOJ3531-[Sdoi2014]旅行(树剖+线段树动态开点)

    传送门 完了今天才知道原来线段树的动态开点和主席树是不一样的啊 我们先考虑没有宗教信仰的限制,那么就是一个很明显的树剖+线段树,路径查询最大值以及路径和 然后有了宗教信仰的限制该怎么做呢? 先考虑暴力 ...

  8. 【bzoj4699】树上的最短路(树剖+线段树优化建图)

    题意 给你一棵 $n$ 个点 $n-1$ 条边的树,每条边有一个通过时间.此外有 $m$ 个传送条件 $(x_1,y_1,x_2,y_2,c)$,表示从 $x_1$ 到 $x_2$ 的简单路径上的点可 ...

  9. POJ3237 Tree(树剖+线段树+lazy标记)

    You are given a tree with N nodes. The tree’s nodes are numbered 1 through N and its edges are numbe ...

随机推荐

  1. git cherry-pick 用法

    1.当合并代码冲突特别多的时候,有时候只想提交自己分支的代码.这个时候使用cherry-pick 可以实现 1)首先使用 git log --oneline -n 找到最近自己分支的提交记录,n表示提 ...

  2. java 版本压缩、解压缩zip

    import java.io.*; import java.util.*; import java.util.zip.ZipOutputStream; import java.util.zip.Zip ...

  3. LabVIEW TCP/IP 断开重连问题

    LabVIEW的TCP/IP函数库非常好用,但是不恰当地设置打开连接结点的参数将带来一些问题,麻烦.如下图的打开连接的参数设置: 上图中指定了本地的端口,会发生这样的情况.当我们关闭应用程序之后,连接 ...

  4. tp5 migrate数据库迁移工具

    tp5相对与tp3.2有很大的不同 migrate是其中一点,通过migrate程序员可以在php代码中创建数据库修改回滚等操作 首先下载migrate扩展,命令行到当前项目目录下执行 compose ...

  5. java使用elasticsearch进行模糊查询-已在项目中实际应用

    java使用elasticsearch进行模糊查询 使用环境上篇文章本人已书写过,需要maven坐标,ES连接工具类的请看上一篇文章,以下是内容是笔者在真实项目中运用总结而产生,并写的是主要方法和思路 ...

  6. DAU、UV、独立IP、PV的区别和联系

    基本概念 DAU(Daily Active User)日活跃用户数量.常用于反映网站.互联网应用或网络游戏的运营情况.DAU通常统计一日(统计日)之内,登录或使用了某个产品的用户数(去除重复登录的用户 ...

  7. ubuntu环境下docker的安装与操作

    只要按照本文的步骤一步步的走,就能正确的安装docker并使用,ubuntu需要联网 1. 在Ubuntu中安装Docker 更新ubuntu的apt源索引 sudo apt-get update 安 ...

  8. os.path.md

    os.path 我们可以利用os.path模块提供的函数更容易地在跨平台上处理文件. 即使我们的程序不是用于夸平台, 也应该使用os.path来让路径名字更加可靠. Parsing Paths os. ...

  9. python之生成随机测验试卷

    自己又开始懒散的态度生活,所以几乎有两个月没有更博了. 项目:美国各州首府地理考试,为防止作弊,35份试卷,50道题随机次序,生成独一无二的试卷. 基本想法: 1.将各州首府的地方和首府写入列表,以K ...

  10. ICC2 常用命令

    1. 关于 data preparation : report_ref_libs : report reference library report_lib  lib_aa : report the ...