本章我们用kmeans算法实现一个简单图像的分割。如下面的图像,我们知道图像分3个簇,背景、白色的任务,红色的丝带以及帽子。

 

    Mat img = cv::imread("../kmeans.jpg");
    namedWindow("image");
    imshow("image", img);

     首先我们会生成采样点,采样点包括原始图像中的所有像素点,采样点用32位浮点数表示,接着我们会定义一个标记矩阵labels,用来存放kmeans的结果。该矩阵中存放的是索引的采样点属于那一个簇,在本例子中,值应该是0,1或2,因为有3个簇。

    //生成一维采样点,包括所有图像像素点,注意采样点格式为32bit浮点数。
    Mat samples(img.cols*img.rows, 1, CV_32FC3);
    //标记矩阵,32位整形
    Mat labels(img.cols*img.rows, 1, CV_32SC1);

    uchar* p;
    int i, j, k=0;
    for(i=0; i < img.rows; i++)
        {
        p = img.ptr<uchar>(i);
        for(j=0; j< img.cols; j++)
            {
            samples.at<Vec3f>(k,0)[0] = float(p[j*3]);
            samples.at<Vec3f>(k,0)[1] = float(p[j*3+1]);
            samples.at<Vec3f>(k,0)[2] = float(p[j*3+2]);
            k++;
            }
        }

    int clusterCount = 3;
    Mat centers(clusterCount, 1, samples.type());
    kmeans(samples, clusterCount, labels,
        TermCriteria( CV_TERMCRIT_EPS+CV_TERMCRIT_ITER, 10, 1.0),
        3, KMEANS_PP_CENTERS, centers);

    最后我们把不同的簇用不同灰度来表示,并把结果放在img1中。

    //我们已知有3个聚类,用不同的灰度层表示。
    Mat img1(img.rows, img.cols, CV_8UC1);
    float step=255/(clusterCount - 1);
    k=0;
    for(i=0; i < img1.rows; i++)
        {
        p = img1.ptr<uchar>(i);
        for(j=0; j< img1.cols; j++)
            {
               int tt = labels.at<int>(k, 0);
               k++;
               p[j] = 255 - tt*step;
            }
        }

    namedWindow("image1");
    imshow("image1", img1);

程序运行后的效果:

程序代码:工程FirstOpenCV17

OpenCV学习(23) 使用kmeans算法实现图像分割的更多相关文章

  1. OpenCV学习(20) grabcut分割算法

    http://www.cnblogs.com/mikewolf2002/p/3330390.html OpenCV学习(20) grabcut分割算法 在OpenCV中,实现了grabcut分割算法, ...

  2. Kmeans算法学习与SparkMlLib Kmeans算法尝试

    K-means算法是最为经典的基于划分的聚类方法,是十大经典数据挖掘算法之一.K-means算法的基本思想是:以空间中k个点为中心进行聚类,对最靠近他们的对象归类.通过迭代的方法,逐次更新各聚类中心的 ...

  3. 《opencv学习》 之 OTSU算法实现二值化

    主要讲解OTSU算法实现图像二值化:    1.统计灰度级图像中每个像素值的个数. 2.计算第一步个数占整个图像的比例. 3.计算每个阈值[0-255]条件下,背景和前景所包含像素值总个数和总概率(就 ...

  4. OpenCV学习(22) opencv中使用kmeans算法

    kmeans算法的原理参考:http://www.cnblogs.com/mikewolf2002/p/3368118.html 下面学习一下opencv中kmeans函数的使用.      首先我们 ...

  5. OpenCV 学习笔记 04 深度估计与分割——GrabCut算法与分水岭算法

    1 使用普通摄像头进行深度估计 1.1 深度估计原理 这里会用到几何学中的极几何(Epipolar Geometry),它属于立体视觉(stereo vision)几何学,立体视觉是计算机视觉的一个分 ...

  6. k-means算法MATLAB和opencv代码

    上一篇博客写了k-means聚类算法和改进的k-means算法.这篇博客就贴出相应的MATLAB和C++代码. 下面是MATLAB代码,实现用k-means进行切割: %%%%%%%%%%%%%%%% ...

  7. OpenCV学习(21) Grabcut算法详解

    grab cut算法是graph cut算法的改进.在理解grab cut算之前,应该学习一下graph cut算法的概念及实现方式. 我搜集了一些graph cut资料:http://yunpan. ...

  8. OpenCV学习笔记(27)KAZE 算法原理与源码分析(一)非线性扩散滤波

    http://blog.csdn.net/chenyusiyuan/article/details/8710462 OpenCV学习笔记(27)KAZE 算法原理与源码分析(一)非线性扩散滤波 201 ...

  9. 基于GraphCuts图割算法的图像分割----OpenCV代码与实现

    转载请注明出处:http://blog.csdn.net/wangyaninglm/article/details/44151213, 来自:shiter编写程序的艺术 1.绪论 图切割算法是组合图论 ...

随机推荐

  1. 01-Maven功能特点

    1.Maven简介 2.Maven重要性 3.Maven原理

  2. R语言--输入输出

    基本输入输出 输入: readline, edit, fix 输出: print, cat 输出重定向 sink #基本输入输出 x=readline('请输入:') #读取输入,一行为一个字符串 x ...

  3. 20155318 《网络攻防》Exp4 恶意代码分析

    20155318 <网络攻防>Exp4 恶意代码分析 基础问题 如果在工作中怀疑一台主机上有恶意代码,但只是猜想,所有想监控下系统一天天的到底在干些什么.请设计下你想监控的操作有哪些,用什 ...

  4. # 2017-2018-2 20155319『网络对抗技术』Exp7:网络欺诈防范

    2017-2018-2 20155319『网络对抗技术』Exp7:网络欺诈防范 一.原理与实践说明 1.实践目标 本实践的目标是:理解常用网络欺诈背后的原理,以提高防范意识,并提出具体防范方法. 2. ...

  5. 模拟赛 sutoringu

    sutoringu 题意: 询问有多少一个字符串内有多少个个子区间,满足可以分成k个相同的串. 分析: 首先可以枚举一个长度len,表示分成的k个长为len的串.然后从1开始,每len的长度分成一块, ...

  6. Linux 学习日记 2 (常用命令 + deb包的安装)

    常用命令:以下是一些比较常用的命令,主要是关于安装软件的一些命令 @_@ cd ~/下载(文件名)/ //进入这个文件夹 , ~指的是根目录 cd .. //返回上一级文件夹 sudo apt-get ...

  7. libgdx退出对话框

    package com.fxb.newtest; import com.badlogic.gdx.ApplicationListener; import com.badlogic.gdx.Gdx; i ...

  8. idea 开启 tomcat 访问日志记录

    all 为 设置为 查看所有类型的请求 (包括ajax)

  9. 记一次 java 连接 linux ssh服务 权限验证失败的原因和解决过程

    下面的问题我是通过之前的ssh测试类找出原因的,因为我的测试类跑通了,但是程序跑不通,看了一下源码发现还有一处没有进行解密,所以才会权限验证失败. // 出现权限验证失败的原因就在这里,因为老板要求对 ...

  10. 表单设置 disabled 后无法传值到后台的解决办法

    在提交 from 表单时,下面的 input 无法正常提交给后台, 发现,如果input的字段设为disabled,该表单是无法提交的. <input type="text" ...