转自:https://www.douban.com/note/518335786/?type=like

============改变数组的维度==================
已知reshape函数可以有一维数组形成多维数组
ravel函数可以展平数组
b.ravel()
flatten()函数也可以实现同样的功能
区别:ravel只提供视图view,而flatten分配内存存储

重塑:

用元祖设置维度
>>> b.shape=(4,2,3)
>>> b
array([[ 0, 1, 2],
        [ 3, 4, 5],

[ 6, 7, 8],
        [ 9, 10, 11],

[12, 13, 14],
        [15, 16, 17],

[18, 19, 20],
        [21, 22, 23]])

转置:
>>> b
array([0, 1],
       [2, 3])
>>> b.transpose()
array([0, 2],
       [1, 3])

=============数组的组合==============
>>> a
array([0, 1, 2],
       [3, 4, 5],
       [6, 7, 8])
>>> b = a*2
>>> b
array([ 0, 2, 4],
       [ 6, 8, 10],
       [12, 14, 16])

1.水平组合
>>> np.hstack((a,b))
array([ 0, 1, 2, 0, 2, 4],
       [ 3, 4, 5, 6, 8, 10],
       [ 6, 7, 8, 12, 14, 16])
>>> np.concatenate((a,b),axis=1)
array([ 0, 1, 2, 0, 2, 4],
       [ 3, 4, 5, 6, 8, 10],
       [ 6, 7, 8, 12, 14, 16])

2.垂直组合
>>> np.vstack((a,b))
array([ 0, 1, 2],
       [ 3, 4, 5],
       [ 6, 7, 8],
       [ 0, 2, 4],
       [ 6, 8, 10],
       [12, 14, 16])
>>> np.concatenate((a,b),axis=0)
array([ 0, 1, 2],
       [ 3, 4, 5],
       [ 6, 7, 8],
       [ 0, 2, 4],
       [ 6, 8, 10],
       [12, 14, 16])

3.深度组合:沿着纵轴方向组合
>>> np.dstack((a,b))
array([[ 0, 0],
        [ 1, 2],
        [ 2, 4],

[ 3, 6],
        [ 4, 8],
        [ 5, 10],

[ 6, 12],
        [ 7, 14],
        [ 8, 16]])

4.列组合column_stack()
一维数组:按列方向组合
二维数组:同hstack一样

5.行组合row_stack()
以为数组:按行方向组合
二维数组:和vstack一样

6.==用来比较两个数组
>>> a==b
array([ True, False, False],
       [False, False, False],
       [False, False, False], dtype=bool)
#True那个因为都是0啊

==================数组的分割===============
>>> a
array([0, 1, 2],
       [3, 4, 5],
       [6, 7, 8])
>>> b = a*2
>>> b
array([ 0, 2, 4],
       [ 6, 8, 10],
       [12, 14, 16])

1.水平分割(难道不是垂直分割???)
>>> np.hsplit(a,3)
[array([0],
       [3],
       [6]),
 array([1],
       [4],
       [7]),
array([2],
       [5],
       [8])]
split(a,3,axis=1)同理达到目的

2.垂直分割
>>> np.vsplit(a,3)
[array([0, 1, 2]), array([3, 4, 5]), array([6, 7, 8])]

split(a,3,axis=0)同理达到目的

3.深度分割
某三维数组:::
>>> d = np.arange(27).reshape(3,3,3)
>>> d
array([[ 0, 1, 2],
        [ 3, 4, 5],
        [ 6, 7, 8],

[ 9, 10, 11],
        [12, 13, 14],
        [15, 16, 17],

[18, 19, 20],
        [21, 22, 23],
        [24, 25, 26]])

深度分割后(即按照深度的方向分割)
注意:dsplite只对3维以上数组起作用
raise ValueError('dsplit only works on arrays of 3 or more dimensions')
ValueError: dsplit only works on arrays of 3 or more dimensions

>>> np.dsplit(d,3)
[array([[ 0],
        [ 3],
        [ 6],

[ 9],
        [12],
        [15],

[18],
        [21],
        [24]]), array([[ 1],
        [ 4],
        [ 7],

[10],
        [13],
        [16],

[19],
        [22],
        [25]]), array([[ 2],
        [ 5],
        [ 8],

[11],
        [14],
        [17],

[20],
        [23],
        [26]])]

===================数组的属性=================
>>> a.shape #数组维度
(3, 3)
>>> a.dtype #元素类型
dtype('int32')
>>> a.size #数组元素个数
9
>>> a.itemsize #元素占用字节数
4
>>> a.nbytes #整个数组占用存储空间=itemsize*size
36
>>> a.T #转置=transpose
array([0, 3, 6],
       [1, 4, 7],
       [2, 5, 8])

Python之Numpy数组拼接,组合,连接的更多相关文章

  1. 【Python】numpy 数组拼接、分割

    摘自https://docs.scipy.org 1.The Basics 1.1 numpy 数组基础 NumPy’s array class is called ndarray. ndarray. ...

  2. python numpy 数组拼接

    我就写一下我遇到的,更多具体的请看Python之Numpy数组拼接,组合,连接 >>> aarray([0, 1, 2],       [3, 4, 5],       [6, 7, ...

  3. 基于Python中numpy数组的合并实例讲解

    基于Python中numpy数组的合并实例讲解 下面小编就为大家分享一篇基于Python中numpy数组的合并实例讲解,具有很好的参考价值,希望对大家有所帮助.一起跟随小编过来看看吧 Python中n ...

  4. numpy数组 拼接

    转载自:https://blog.csdn.net/zyl1042635242/article/details/43162031 数组拼接方法一 首先将数组转成列表,然后利用列表的拼接函数append ...

  5. Python:numpy数组转换为json格式

    在python中,如何将一个numpy数组转换为json格式? 这是最近遇到的一个问题,做个笔记. 假设arr为numpy数组,将其转换为json格式: 总体思想是①首先转换为python的list, ...

  6. Numpy数组的组合与分割详解

    在介绍数组的组合和分割前,我们需要先了解数组的维(ndim)和轴(axis)概念. 如果数组的元素是数组,即数组嵌套数组,我们就称其为多维数组.几层嵌套就称几维.比如形状为(a,b)的二维数组就可以看 ...

  7. numpy——>数组拼接np.concatenate

    语法:np.concatenate((a1, a2, ...), axis=0) 1.默认是 axis = 0,也就是说对0轴(行方向)的数组对象,进行其垂直方向(axis=1)的拼接(即数据整行整行 ...

  8. 对Numpy数组按axis运算的理解

    Python的Numpy数组运算中,有时会出现按axis进行运算的情况,如 >>> x = np.array([[1, 1], [2, 2]]) >>> x arr ...

  9. Python中Numpy ndarray的使用

    本文主讲Python中Numpy数组的类型.全0全1数组的生成.随机数组.数组操作.矩阵的简单运算.矩阵的数学运算. 尽管可以用python中list嵌套来模拟矩阵,但使用Numpy库更方便. 定义数 ...

随机推荐

  1. Theano3.7-练习之堆叠消噪自动编码器

    来自:http://deeplearning.net/tutorial/SdA.html#sda Stacked Denoising Autoencoders (SdA) note:这部分需要读者读过 ...

  2. English_word_learning

    这次报名参加了学院的21天打卡活动,说实话,也是想给自己一个积累的平台. 毕竟,真的有时候感觉挺弱的 有的人用了一年考完了四六级,而有人却用四年还未考完. 听到有一位学长因为自己的四级成绩没有达到48 ...

  3. static成员函数不能调用non-static成员函数

    1 一般类静态成员函数不能调用非静态成员函数 2 static成员函数可以调用构造函数吗? 答案是肯定的,由于static成员函数没有this指针,所以一般static成员函数是不能访问non-sta ...

  4. 20155232《网络对抗》Exp2 后门原理与实践

    20155232<网络对抗>Exp2 后门原理与实践 问题回答 1.例举你能想到的一个后门进入到你系统中的可能方式? 通过网页上弹出来的软件自动安装 2.例举你知道的后门如何启动起来(wi ...

  5. Source insight 中 标题栏路径显示完整路径的方法

    在source insight 的标题栏中显示完整路径名的方法.Options -> Preferences -> Display -> Trim long path names w ...

  6. TMS320VC5509使用nof flash AM29LV400

    1. 硬件接口如下,其中nor flash的使用方法,写的时候和NAND FLASH是一样的,读的时候和DRAM是一样的 2. 看下擦除指令和编程指令 3. 代码如下 #include <csl ...

  7. [UOJ#461]新年的Dog划分[二分图染色、二分]

    题意 给你一张无向连通图,你并不知道有哪些边,你首先要回答这张图是否是二分图,如果是,回答这张图黑白染色过后的任意一个点集.你需要在2000次询问内找到结果,每次你可以询问原图中一个边集删掉后是否还连 ...

  8. [CF1017G]The Tree[树链剖分+线段树]

    题意 给一棵一开始 \(n\) 个点全是白色的树,以 \(1\) 为根,支持三种操作: 1.将某一个点变黑,如果已经是黑色则该操作对所有儿子生效. 2.将一棵子树改成白色. 3.询问某个点的颜色. \ ...

  9. 程序员大佬推荐的java学习路线

    作为我的第一篇博客,我第一个想到的就是在校时就看到的这篇文章.并且在之后的时间里自己都反复观看过,有时候这不单单是一篇学习路线,也是审视自己技术能力的里程碑,和激励自己的鞭挞绳. 先来个书籍清单: & ...

  10. 设计模式 笔记 中介者模式 Mediator

    //---------------------------15/04/27---------------------------- //Mediator 中介者模式----对象行为型模式 /* 1:意 ...