【BZOJ3745】Norma(CDQ分治)

题面

BZOJ

洛谷

题解

这种问题直接做不好做,显然需要一定的优化。考虑\(CDQ\)分治。

现在唯一需要考虑的就是跨越当前中间节点的所有区间如何计算答案了。

从\(mid\)开始向左枚举左端点,考虑右端点的贡献。那么我们在右侧记录两个指针\(p,q\),分别表示左侧的最大值和最小值第一次改变的位置。这两个指针会把整个序列分成三段。

第一段最大值和最小值都是左侧最大最小值,直接计算区间长度和就好了。

第二段是最大值和最小值中一个被改变了,分情况讨论一下,维护右侧的区间最大最小值就可以直接算了。第三部分是最大值和最小值都被改变了,那么把式子写出来,维护一个前缀就好了。

时间复杂度\(O(nlogn)\)。可能实现要仔细想清楚,可以看看代码。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>
using namespace std;
#define ll long long
#define MAX 500500
#define MOD 1000000000
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int S(int l,int r){return 1ll*(l+r)*(r-l+1)/2%MOD;}
void add(int &x,int y){x+=y;if(x>=MOD)x-=MOD;if(x<0)x+=MOD;}
int n,ans,a[MAX];
int sm[MAX],sp[MAX],smx[MAX],smn[MAX],smxp[MAX],smnp[MAX],mnv[MAX],mxv[MAX];
void CDQ(int l,int r)
{
if(l==r){add(ans,1ll*a[l]*a[l]%MOD);return;}
int mid=(l+r)>>1;CDQ(l,mid);CDQ(mid+1,r);
int mn=a[mid],mx=a[mid];
sm[mid]=sp[mid]=smx[mid]=smn[mid]=smxp[mid]=smnp[mid]=0;
for(int i=mid+1;i<=r;++i)
if(i==mid+1)
{
mnv[i]=mxv[i]=smx[i]=smn[i]=a[i];
smnp[i]=smxp[i]=1ll*a[i]*i%MOD;
sm[i]=1ll*a[i]*a[i]%MOD;sp[i]=1ll*i*a[i]%MOD*a[i]%MOD;
}
else
{
mnv[i]=min(mnv[i-1],a[i]);
mxv[i]=max(mxv[i-1],a[i]);
add(smn[i]=smn[i-1],mnv[i]);
add(smx[i]=smx[i-1],mxv[i]);
add(smnp[i]=smnp[i-1],1ll*mnv[i]*i%MOD);
add(smxp[i]=smxp[i-1],1ll*mxv[i]*i%MOD);
add(sm[i]=sm[i-1],1ll*mnv[i]*mxv[i]%MOD);
add(sp[i]=sp[i-1],1ll*i*mnv[i]%MOD*mxv[i]%MOD);
}
for(int i=mid,p=mid,q=mid;i>=l;--i)
{
mn=min(mn,a[i]);mx=max(mx,a[i]);
while(p<r&&mnv[p+1]>=mn)++p;
while(q<r&&mxv[q+1]<=mx)++q;
add(ans,1ll*S(mid-i+2,min(p,q)-i+1)*mn%MOD*mx%MOD);
if(p<q)add(ans,((smnp[q]-smnp[p])-1ll*(smn[q]-smn[p])*(i-1)%MOD+MOD)*mx%MOD);
if(q<p)add(ans,((smxp[p]-smxp[q])-1ll*(smx[p]-smx[q])*(i-1)%MOD+MOD)*mn%MOD);
add(ans,(((sp[r]-sp[max(p,q)])-1ll*(sm[r]-sm[max(p,q)])*(i-1)%MOD+MOD)%MOD));
}
}
int main()
{
n=read();
for(int i=1;i<=n;++i)a[i]=read();
CDQ(1,n);printf("%d\n",ans);
return 0;
}

【BZOJ3745】Norma(CDQ分治)的更多相关文章

  1. 【BZOJ3745】[Coci2015]Norma cdq分治

    [BZOJ3745][Coci2015]Norma Description Input 第1行,一个整数N: 第2~n+1行,每行一个整数表示序列a. Output 输出答案对10^9取模后的结果. ...

  2. NORMA2 - Norma [cdq分治]

    题面 洛谷 你有一个长度为n的序列,定义这个序列中每个区间的价值是 \(Cost(i,j)=Min(Ai...Aj)∗Max(Ai...Aj)∗(j−i+1)Cost(i,j)=Min(A_{i}.. ...

  3. 【CF526F】Pudding Monsters cdq分治

    [CF526F]Pudding Monsters 题意:给你一个排列$p_i$,问你有对少个区间的值域段是连续的. $n\le 3\times 10^5$ 题解:bzoj3745 Norma 的弱化版 ...

  4. 【教程】简易CDQ分治教程&学习笔记

    前言 辣鸡蒟蒻__stdcall终于会CDQ分治啦!       CDQ分治是我们处理各类问题的重要武器.它的优势在于可以顶替复杂的高级数据结构,而且常数比较小:缺点在于必须离线操作. CDQ分治的基 ...

  5. BZOJ 2683 简单题 ——CDQ分治

    [题目分析] 感觉CDQ分治和整体二分有着很本质的区别. 为什么还有许多人把他们放在一起,也许是因为代码很像吧. CDQ分治最重要的是加入了时间对答案的影响,x,y,t三个条件. 排序解决了x ,分治 ...

  6. HDU5618 & CDQ分治

    Description: 三维数点 Solution: 第一道cdq分治...感觉还是很显然的虽然题目不能再傻逼了... Code: /*=============================== ...

  7. 初识CDQ分治

    [BZOJ 1176:单点修改,查询子矩阵和]: 1176: [Balkan2007]Mokia Time Limit: 30 Sec  Memory Limit: 162 MBSubmit: 200 ...

  8. HDU5322 Hope(DP + CDQ分治 + NTT)

    题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5322 Description Hope is a good thing, which can ...

  9. BZOJ4170 极光(CDQ分治 或 树套树)

    传送门 BZOJ上的题目没有题面-- [样例输入] 3 5 2 4 3 Query 2 2 Modify 1 3 Query 2 2 Modify 1 2 Query 1 1 [样例输出] 2 3 3 ...

随机推荐

  1. 【MongoDB】MongoDB的下载 安装 配置及使用

    windows系统  教程 1.下载地址   (官方提供根据系统位数选择对应的bit.exe下载) 由于自己win32系统不支持该官方版本,在网上又找了个 mongodb-win32-i386版本 p ...

  2. 判断库位是否参与MRP运算

    表 T001L 字段DISKZ (库存地点MRP标识)为空,参与MRP运算,为1不参与.

  3. Spring Data JPA、MyBatis还有Hibernate有什么区别

    原文:https://www.imooc.com/article/19754?block_id=tuijian_wz Spring Data JPA.MyBatis还有Hibernate有什么区别 2 ...

  4. # 20155337《网络对抗》Exp6 信息搜集与漏洞扫描

    20155337<网络对抗>Exp6 信息搜集与漏洞扫描 实践目标 (1)各种搜索技巧的应用 (2)DNS IP注册信息的查询 (3)基本的扫描技术:主机发现.端口扫描.OS及服务版本探测 ...

  5. 理解 NgModelController 中相关方法和属性

    1. 理解$formatters和$parsers方法 angular的双向绑定可以实现view和model中的值自动同步,但有时候我们不想让用户输入的(view值)和发送给后台的(model值)并不 ...

  6. 蓝牙学习笔记二(Android连接问题)

    可以通过以下两点加速蓝牙连接: 1.更新连接参数 interval:连接间隔(connection intervals ),范围在 7.5 毫秒 到 4 秒. latency:连接延迟 ... 还有一 ...

  7. Synchronous/Asynchronous:任务的同步异步,以及asynchronous callback异步回调

    两个线程执行任务有同步和异步之分,看了Quora上的一些问答有了更深的认识. When you execute something synchronously, you wait for it to ...

  8. SpringBoot日记——Redis整合

    上一篇文章,简单记录了一下缓存的使用方法,这篇文章将把我们熟悉的redis整合进来. 那么如何去整合呢?首先需要下载和安装,为了使用方便,也可以做环境变量的配置. 下载和安装的方法,之前有介绍,在do ...

  9. Mvc4_@Styles.Render提高性能

    在页面上可以用@Styles.Render("~/Content/css") 来加载css 首先要在App_Start 里面BundleConfig.cs 文件里面 添加要包含的c ...

  10. metasploit学习之情报搜集

    3.1.被动信息搜集whois查询Netcraft nslookup>set type=mx>testfire.net Google Hacking 3.2 主动信息搜集 使用nmap进行 ...