2013-2014 ACM-ICPC, NEERC, Southern Subregional Contest Problem C. Equivalent Cards 计算几何
Problem C. Equivalent Cards
题目连接:
http://www.codeforces.com/gym/100253
Description
Jane is playing a game with her friends. They have a deck of round cards of radius 100. Each card has a
set of disjoint rectangles strictly within the bounding circle. The rectangles' vertices and the card center
have integer coordinates. However, the rectangles' edges are not necessarily parallel to the axes. The value
of a card depends on the rectangles in it and equals the sum of areas of all its rectangles. The cards are
equivalent if they have same values.
The rules are simple. Each player is given a card in the beginning. Then they turn the cards face-up. If
any player can spot another player's card equivalent to their own card, the player who rst noticed the
equivalency gives their cards to another player and draws a new card from the deck face-up. The game
ends when there are no equivalent cards among players, or when a player needs to draw a card, but the
deck is empty. The player with the least number of cards wins.
Of course, Jane never cheats. She also believes that her friends don't cheat as well. But the game is so
dynamic, that there is no time to verify if some cards are equivalent, i.e. have the same total area of
rectangles. So, if somebody makes a mistake and claims that two cards are equivalent while they are not,
other players may leave it unnoticed and keep playing.
To avoid this, Jane decided to use her web-camera and write a program to nd equivalent cards. She noticed
that cards on the pictures from the camera taken under some angle look like ellipses and rectangles look
like parallelograms, but she is not good at geometry. Also the images are scaled, shifted and rotated, so
the problem seems to be too hard to Jane. She asked you to write an algorithm to nd equivalent cards.
Fortunately, you know a good image processing library which does the hardest work of nding gures for
you. Your task is, given the library output, nd all equivalence classes and for each card tell which class
it belongs to. An equivalence class is a set of cards having the same sum of areas of rectangles.
Input
The rst line of the input contains n (1 ≤ n ≤ 100), where n is the number of pictures. Each picture
contains a single card in it.
Then n descriptions of pictures follow. The description of a picture consists of several lines. The rst
two lines of the description specify an ellipse a card boundary on the picture. The rst line contains
coordinates of two most distant opposite points on the ellipse (any pair of opposite points in case of a
tie). The second line contains the coordinates of two closest opposite points on the ellipse (any pair of
opposite points in case of a tie), the distance between them is at least 1. These four points completely
determine the ellipse. The following line contains ri (1 ≤ ri ≤ 4) the number of rectangles on the card.
The following ri blocks contain the coordinates of four points, a pair of coordinates per line. Each point
is a corner of a corresponding parallelogram on the picture in the clockwise or counter-clockwise order.
All coordinates are oating point numbers between -1000 and 1000, inclusively. They are given with an
accuracy of exactly 8 digits after the decimal point
Output
Print the only line containing the sequence f1, f2, . . . , fn describing the equivalence classes. It should be
true that fi = fj if and only if the i-th and the j-th cards are equivalent. You may use any integer values
between 1 and 100 inclusive.
Sample Input
3
-10.00000000 0.00000000 10.00000000 0.00000000
0.00000000 -10.00000000 0.00000000 10.00000000
2
5.00000000 5.00000000
5.00000000 6.00000000
6.00000000 6.00000000
6.00000000 5.00000000
3.00000000 2.00000000
3.00000000 1.00000000
4.00000000 1.00000000
4.00000000 2.00000000
-8.00000000 -6.00000000 8.00000000 6.00000000
6.00000000 8.00000000 -6.00000000 -8.00000000
1
1.00000000 0.00000000
0.00000000 1.00000000
-1.00000000 0.00000000
0.00000000 -1.00000000
-10.00000000 0.00000000 10.00000000 0.00000000
0.00000000 -5.00000000 0.00000000 5.00000000
1
1.00000000 1.00000000
0.00000000 1.00000000
0.00000000 -1.00000000
1.00000000 -1.00000000
Sample Output
1 1 2
Hint
题意
说平面上有一个圆,圆内有很多正方形,现在这个圆被拉伸成为了一个椭圆,里面的正方形就被拉成了平行四边形。
现在问你按照面积和分类,这些圆能够分成几类
题解:
椭圆面积为piab,平行四边形面积为ab,所以两个图形是等比例放缩的,那就直接按照比例算就好了……
代码
#include<bits/stdc++.h>
using namespace std;
const double INF = 1E200 ;
const double EP = 1E-10 ;
const int MAXV = 300 ;
const double PI = 3.14159265 ;
/* 基本几何结构 */
struct POINT
{
double x;
double y;
POINT(double a=0, double b=0) { x=a; y=b;} //constructor
};
struct LINESEG
{
POINT s;
POINT e;
LINESEG(POINT a, POINT b) { s=a; e=b;}
LINESEG() { }
};
struct LINE // 直线的解析方程 a*x+b*y+c=0 为统一表示,约定 a >= 0
{
double a;
double b;
double c;
LINE(double d1=1, double d2=-1, double d3=0) {a=d1; b=d2; c=d3;}
};
LINE makeline(POINT p1,POINT p2)
{
LINE tl;
int sign = 1;
tl.a=p2.y-p1.y;
if(tl.a<0)
{
sign = -1;
tl.a=sign*tl.a;
}
tl.b=sign*(p1.x-p2.x);
tl.c=sign*(p1.y*p2.x-p1.x*p2.y);
return tl;
}
bool lineintersect(LINE l1,LINE l2,POINT &p) // 是 L1,L2
{
double d=l1.a*l2.b-l2.a*l1.b;
if(abs(d)<EP) // 不相交
return false;
p.x = (l2.c*l1.b-l1.c*l2.b)/d;
p.y = (l2.a*l1.c-l1.a*l2.c)/d;
return true;
}
/*
r=dotmultiply(p1,p2,op),得到矢量(p1-op)和(p2-op)的点积,如果两个矢量都非零矢量
r<0:两矢量夹角为钝角;
r=0:两矢量夹角为直角;
r>0:两矢量夹角为锐角
*******************************************************************************/
double dist(POINT p1,POINT p2) // 返回两点之间欧氏距离
{
return( sqrt( (p1.x-p2.x)*(p1.x-p2.x)+(p1.y-p2.y)*(p1.y-p2.y) ) );
}
double multiply(POINT sp,POINT ep,POINT op)
{
return((sp.x-op.x)*(ep.y-op.y)-(ep.x-op.x)*(sp.y-op.y));
}
double dotmultiply(POINT p1,POINT p2,POINT p0)
{
return ((p1.x-p0.x)*(p2.x-p0.x)+(p1.y-p0.y)*(p2.y-p0.y));
}
double relation(POINT p,LINESEG l)
{
LINESEG tl;
tl.s=l.s;
tl.e=p;
return dotmultiply(tl.e,l.e,l.s)/(dist(l.s,l.e)*dist(l.s,l.e));
}
// 求点C到线段AB所在直线的垂足 P
POINT perpendicular(POINT p,LINESEG l)
{
LINE l1=makeline(l.s,l.e);
LINE l2=l1;
l2.c=-(l1.a*p.x+l2.b*p.y);
}
double dis(POINT A,POINT B)
{
return sqrt((A.x-B.x)*(A.x-B.x)+(A.y-B.y)*(A.y-B.y));
}
double solve()
{
POINT p1,p2,p3,p4,P[4],mid;
double ans=0;
scanf("%lf%lf%lf%lf",&p1.x,&p1.y,&p2.x,&p2.y);
scanf("%lf%lf%lf%lf",&p3.x,&p3.y,&p4.x,&p4.y);
mid.x=(p1.x+p2.x)/2.0,mid.y=(p1.y+p2.y)/2.0;
double tmp=dist(p1,p2)*dist(p3,p4);
int q;
scanf("%d",&q);
for(int i=0;i<q;i++)
{
for(int i=0;i<4;i++)
scanf("%lf%lf",&P[i].x,&P[i].y);
ans+=abs(multiply(P[0],P[2],P[1]));
}
return ans/tmp;
}
double area[5000];
int Ans[5005];
int main()
{
int t;
scanf("%d",&t);
for(int i=1;i<=t;i++)
{
Ans[i]=i;
area[i]=solve();
}
for(int i=1;i<=t;i++)
{
for(int j=1;j<i;j++)
{
if(abs(area[i]-area[j])<1e-6)
{
Ans[i]=Ans[j];
break;
}
}
}
for(int i=1;i<=t;i++)
{
if(i==1)printf("%d",Ans[i]);
else printf(" %d",Ans[i]);
}
printf("\n");
return 0;
}
2013-2014 ACM-ICPC, NEERC, Southern Subregional Contest Problem C. Equivalent Cards 计算几何的更多相关文章
- 2018-2019 ICPC, NEERC, Southern Subregional Contest
目录 2018-2019 ICPC, NEERC, Southern Subregional Contest (Codeforces 1070) A.Find a Number(BFS) C.Clou ...
- Codeforces 2018-2019 ICPC, NEERC, Southern Subregional Contest
2018-2019 ICPC, NEERC, Southern Subregional Contest 闲谈: 被操哥和男神带飞的一场ACM,第一把做了这么多题,荣幸成为7题队,虽然比赛的时候频频出锅 ...
- 2018-2019 ICPC, NEERC, Southern Subregional Contest (Online Mirror) Solution
从这里开始 题目列表 瞎扯 Problem A Find a Number Problem B Berkomnadzor Problem C Cloud Computing Problem D Gar ...
- Codeforces1070 2018-2019 ICPC, NEERC, Southern Subregional Contest (Online Mirror, ACM-ICPC Rules, Teams Preferred)总结
第一次打ACM比赛,和yyf两个人一起搞事情 感觉被两个学长队暴打的好惨啊 然后我一直做傻子题,yyf一直在切神仙题 然后放一波题解(部分) A. Find a Number LINK 题目大意 给你 ...
- codeforce1070 2018-2019 ICPC, NEERC, Southern Subregional Contest (Online Mirror, ACM-ICPC Rules, Teams Preferred) 题解
秉承ACM团队合作的思想懒,这篇blog只有部分题解,剩余的请前往星感大神Star_Feel的blog食用(表示男神汉克斯更懒不屑于写我们分别代写了下...) C. Cloud Computing 扫 ...
- 2018-2019 ICPC, NEERC, Southern Subregional Contest (Online Mirror, ACM-ICPC Rules, Teams Preferred)
A. Find a Number 找到一个树,可以被d整除,且数字和为s 记忆化搜索 static class S{ int mod,s; String str; public S(int mod, ...
- 2018.10.20 2018-2019 ICPC,NEERC,Southern Subregional Contest(Online Mirror, ACM-ICPC Rules)
i207M的“怕不是一个小时就要弃疗的flag”并没有生效,这次居然写到了最后,好评=.= 然而可能是退役前和i207M的最后一场比赛了TAT 不过打得真的好爽啊QAQ 最终结果: 看见那几个罚时没, ...
- 2018-2019 ICPC, NEERC, Southern Subregional Contest (Online Mirror, ACM-ICPC Rules, Teams Preferred) Solution
A. Find a Number Solved By 2017212212083 题意:$找一个最小的n使得n % d == 0 并且 n 的每一位数字加起来之和为s$ 思路: 定义一个二元组$< ...
- 【*2000】【2018-2019 ICPC, NEERC, Southern Subregional Contest C 】Cloud Computing
[链接] 我是链接,点我呀:) [题意] [题解] 我们可以很容易知道区间的每个位置有哪些安排可以用. 显然 我们优先用那些花费的钱比较少的租用cpu方案. 但一个方案可供租用的cpu有限. 我们可以 ...
随机推荐
- 何凯文每日一句打卡||DAY4
- Struts2_day01
一.内容大纲 1 struts2概述 (1)应用在web层 2 struts2入门案例 3 struts2底层执行过程 4 struts2相关配置 (1)struts.xml配置 - package. ...
- 浅谈 JSON 那些被转义的字符们
其实,之前我一直以为 JSON 会把 ASCII 可显示字符以外的统统转义为 Unicode,直到有一次我用 JSON.stringify 才发现,其实是 PHP 为我们想的太周到了. 我以前是一位 ...
- 跨域请求:JSONP
在JavaScript中,有一个很重要的安全性限制,被称为"同源策略".即JavaScript只能访问与包含它的文档在同一域下的内容.然而,当进行一些比较深入的前端编程的时候,不可 ...
- CSS-3 Transform 的使用
CSS3制作动画的几个属性:变形(transform).转换(transition)和动画(animation)等更高级的CSS3技术.这篇主要是 Transform 的使用. Transform 字 ...
- Raid 磁盘阵列
raid 原理与区别 raid0至少2块硬盘.吞吐量大,性能好,同时读写,但损坏一个就完蛋 raid1至少2块硬盘.相当镜像,一个存储,一个备份.安全性比较高.但是性能比0弱 raid5至少3块硬盘. ...
- Shell中各种判断语法
Shell判断 按照文件类型进行判断 -b 判断文件是否存在,并且是否为快设备文件(是块设备文件为真) -c 判断文件是否存在,并且是否为字符设备文件(是字符设备文件为真) -d 判断文件是否存在,并 ...
- BGM时长
1.can u feel it 00:08-00:30 22s 2.纤夫的爱 00:43-00:54 11s 3.渡情 00:55-01:52 57s 4.nobody 01:56-02:25 29s ...
- linux下常用FTP命令 上传下载文件【转】
1. 连接ftp服务器 格式:ftp [hostname| ip-address]a)在linux命令行下输入: ftp 192.168.1.1 b)服务器询问你用户名和密码,分别输入用户名和相应密码 ...
- 2018 ICPC 沈阳网络赛
2018 ICPC 沈阳网络赛 Call of Accepted 题目描述:求一个算式的最大值与最小值. solution 按普通算式计算方法做,只不过要同时记住最大值和最小值而已. Convex H ...