Caffe常用层参数介绍
DATA
crop:截取原图像中一个固定patch
layers {
name: "data"
type: DATA
top: "data"
top: "label"
data_param {
source: "../data/ImageNet/imagenet-train" #数据存放位置
batch_size: 128 #一次批处理的大小,视内存大小而定。四维数组N*C*H*W中的N
backend: LMDB #数据库类型,默认为leveldb
}
include: { phase: TRAIN } #如果加了这一行的话表示是在训练过程中使用该层,可将TRAIN替换为TEST
}
CONVOLUTION
layer {
name: "conv"
type: "Convolution"
bottom: "data"
top: "conv"
param {
lr_mult: 1 #权重的学习率 该层lr=lr_mult*base_lr
decay_mult: 1 #权重的衰减值
}
param {
lr_mult: 2 #偏置项的学习率
decay_mult: 0 #偏置项的衰减值
}
convolution_param {
num_output: 96 #该层输出的filter的个数。四维数组N*C*H*W中的W
kernel_size: 11 #卷积核大小11*11。可设定长kernel_h与宽kernel_w
stride: 4 #步长,也就是卷积核滑动的距离
weight_filler { #卷积核初始化方式
type: "gaussian" #高斯分布
std: 0.01 #标准差为0.01
}
bias_filler { #偏置项初始化方式
type: "constant" #连续分布
value: 0
}
}
}
这里说一下关于weight_filler和bias_filler的几种设定方式:
| TYPE | PARAM | EXPLAIN |
|---|---|---|
| Constant | Value | 以常量初始化,初始化值为[Value] |
| Gaussian | std,mean | 以高斯分布方式初始化,均值为[mean],标准差为[std] |
| uniform | min,max | 均匀分布,[min,max] |
| xavier | scale | 均匀分布,[-scale,scale],scale=sqrt(3/K*H*W) |
RELU
layer {
name: "relu"
type: "ReLU"
bottom: "conv"
top: "conv"
}
Relu标准函数:f(x)=max(0,x)f(x)=max(0,x)。
当未指定negative_slope值时,为标准Relu层;指定negative_slope值时,f(x)={x,negative_slope×x,x>0x≤0f(x)={x,x>0negative_slope×x,x≤0
LRN
layer {
name: "norm"
type: "LRN"
bottom: "conv"
top: "norm"
lrn_param {
local_size: 5#对于cross channel LRN,表示需要求和的channel的数量;对于within channel LRN,表示需要求和的空间区域的边长。默认为5
alpha: 0.0001 #LRN公式中的参数alpha
beta: 0.75 #LRN公式中的参数beta
}
}
POOLING
layer {
name: "pool"
type: "Pooling"
bottom: "norm1"
top: "pool1"
pooling_param {
pool: MAX #有三种池化方式:MAX,AVG,STOCHASTIC
kernel_size: 3 #卷积核大小;可设定长kernel_h与宽kernel_w
stride: 2 #步长
}
}
INNERPRODUCT
参数和卷积层几乎一样,仅贴出代码,不做过多解释
layer {
name: "fc7"
type: "InnerProduct"
bottom: "fc6"
top: "fc7"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 4096
weight_filler {
type: "gaussian"
std: 0.005
}
bias_filler {
type: "constant"
value: 0.1
}
}
}
ACCURACY
layer {
name: "accuracy"
type: "Accuracy"
bottom: "fc8"
bottom: "label"
top: "accuracy"
include {phase: TEST}
}
可添加
accuracy_param {
top_k: 5
}
默认为top_1,添加该项后,选择测试top_k准确率。
SOFTMAX_LOSS
layers {
name: "loss"
type: SOFTMAX_LOSS
bottom: "pool3"
bottom: "label"
top: "loss"
include: { phase: TRAIN }
}
注意,在计算softmax_loss前,将pool3层默认经过了一次softmax计算。
另外,以上所有层的name项都是自己随意定的,只要好辨认,不重复就可以。
Caffe常用层参数介绍的更多相关文章
- 深入浅出 JVM GC(4)常用 GC 参数介绍
# 前言 从前面的3篇文章中,我们分析了5个垃圾收集器,还有一些 GC 的算法,那么,在 GC 调优中,我们肯定会先判断哪里出现的问题,然后再根据出现的问题进行调优,而调优的手段就是 JVM 提供给我 ...
- Caffe的solver参数介绍
版权声明:转载请注明出处,谢谢! https://blog.csdn.net/Quincuntial/article/details/59109447 1. Parameters solver.p ...
- Hadoop(三) HADOOP常用命令参数介绍
-help 功能:输出这个命令参数手册 -ls 功能:显示目录信息 示例: hadoop fs -ls hdfs://hadoop-server01:9000/ 备注 ...
- java常用JVM参数介绍
采集服务JVM参数说明 -Xmx4g -Xms4g -Xmn512m -XX:MetaspaceSize=256m -XX:MaxMetaspaceSize=4g -Xss256k Xms 是指设定程 ...
- Caffe学习系列(5):其它常用层及参数
本文讲解一些其它的常用层,包括:softmax_loss层,Inner Product层,accuracy层,reshape层和dropout层及其它们的参数配置. 1.softmax-loss so ...
- 转 Caffe学习系列(5):其它常用层及参数
本文讲解一些其它的常用层,包括:softmax_loss层,Inner Product层,accuracy层,reshape层和dropout层及其它们的参数配置. 1.softmax-loss so ...
- 4、Caffe其它常用层及参数
借鉴自:http://www.cnblogs.com/denny402/p/5072746.html 本文讲解一些其它的常用层,包括:softmax_loss层,Inner Product层,accu ...
- caffe(5) 其他常用层及参数
本文讲解一些其它的常用层,包括:softmax_loss层,Inner Product层,accuracy层,reshape层和dropout层及其它们的参数配置. 1.softmax-loss so ...
- 【转】Caffe初试(七)其它常用层及参数
本文讲解一些其它的常用层,包括:softmax-loss层,Inner Product层,accuracy层,reshape层和dropout层及它们的参数配置. 1.softmax-loss sof ...
随机推荐
- 【Java】 大话数据结构(2) 线性表之单链表
本文根据<大话数据结构>一书,实现了Java版的单链表. 每个结点中只包含一个指针域的链表,称为单链表. 单链表的结构如图所示: 单链表与顺序存储结构的对比: 实现程序: package ...
- Python PyCharm编译器
PyCharm编译器有很强大的代码提示功能,业界都说很好用,所以我尝试着安装并使用,以下是过程. 下载地址:http://www.jetbrains.com/pycharm/download/#sec ...
- 在 Vim 中优雅地查找和替换
原文更好看链接http://harttle.com/2016/08/08/vim-search-in-file.html 总有人问我 Vim 中能不能查找,当然能!而且是超级强的查找! 这篇文章来详细 ...
- 002.FTP配置项详解
一 相关配置项 anonymous_enable=YES #允许匿名用户登录 local_enable=YES #允许本地用户登录 write_enable=YES #允许本地用户上传 local_u ...
- 送你一套纯净版的 SSM 架构
大致介绍一下,目前 Java 中使用比较多的框架组合就是 Spring .Springmvc .Mybatis ,这 3 个框架也就是我们常说的 SSM. 前面陆陆续续也已经介绍完了这 3 个框架,今 ...
- ApiPost的环境变量的定义和使用「ApiPost环境变量」
新版的ApiPost(Chrome拓展V2.0.8+/客户端V2.2.1+)已经支持环境变量的定义和使用. 本文主要介绍ApiPost环境变量的第一课:如何定义环境变量,并如何使用它. ApiPost ...
- Android - Base64
Android 将图片转换为Base64 public void convertToBase64(View view) throws IOException { //获取ImageView的图片 Bi ...
- jquery获取系统当前时间
//判断是否在前面加0function getNow(s) { return s < 10 ? '0' + s: s;} var myDate = new Date(); var year=my ...
- JZYZOJ 2043 多项式除法和取余 NTT 多项式
http://172.20.6.3/Problem_Show.asp?id=2043 最开始用了FFT,交上去全tle和wa了(tle的比较多),测了一组数据发现求逆元的过程爆double了(毕竟系数 ...
- URAL 1970 J - 皇后像廣場 dfs
J - 皇后像廣場 题目连接: http://acm.hust.edu.cn/vjudge/contest/123332#problem/J Description Vova was walking ...