欢迎关注个人公众号:爱喝可可牛奶

LeetCode 39. 组合总和 40.组合总和II 131.分割回文串

LeetCode 39. 组合总和

分析

回溯可看成对二叉树节点进行组合枚举,分为横向和纵向

每次往sum添加新元素时,必须明确从can哪个位置开始,定义变量pos

返回条件 sum == target 或 sum > target; 横向结束条件 没有新元素可以添加了即pos<can.length;

bt(can, sum, tar, pos){
if(sum == tar) add return;
if(sum > tar) pos++ return;
for(int i = pos; i < can.len;i++){
sum+=can[pos];
bt(can, sum, tar, i);
sum-=can[pos];
}
}

这个回溯考虑sum > tar时, pos++不应该写在第3行,这样导致回溯减掉的元素值与递归添加的不一样。而应该放在第4行for()中,只有当纵向回溯结束时(也就是很多个sum+=can[i]导致return后),横向遍历才会往右移动;回溯第n个can[i] 回溯第n-1个can[i];

剪枝

一次回溯只能抵消一层递归;每次return只是从已经添加进sum的众多can[i]中减掉一个

举个栗子:

sum+= n个can[i],回溯一次还剩n-1个can[i];这时要i++了;但是剩下的sum和这个i++后的新can[i]加起来可能也会超过tar,这步操作可以剪枝,避免进入新can[i]的递归;

for (int i = pos; i < candidates.size() && sum + candidates[i] <= target; i++)

代码

class Solution {
List<List<Integer>> res = new ArrayList<>();
LinkedList<Integer> path = new LinkedList();
public List<List<Integer>> combinationSum(int[] candidates, int target) { Arrays.sort(candidates); // 先进行排序
backtracking(candidates, target, 0, 0);
return res;
} public void backtracking(int[] candidates, int target, int sum, int idx) {
// 找到了数字和为 target 的组合
if (sum == target) {
res.add(new ArrayList<>(path));
return;
} for (int i = idx; i < candidates.length; i++) {
// 如果 sum + candidates[i] > target 就终止遍历
if (sum + candidates[i] > target) break;
path.add(candidates[i]);
backtracking(candidates, target, sum + candidates[i], i);
path.removeLast(); // 回溯,移除路径 path 最后一个元素
}
}
}

LeetCode 40.组合总和II

分析

在原有基础上设限每个数字在每个组合中只能使用 一次 且不包含重复的组合

Arrays升序;纵向遍历时就要i++;Set去重

Set去重超时了!!! 要在添加集合的时候就判断是否重复,取res中最后一个path和当前满足条件的path比较 也不行

纵向递归不需要去重,横向递归时采用去重

剪枝

代码

class Solution {
List<List<Integer>> res = new LinkedList();
LinkedList<Integer> path = new LinkedList();
int sum = 0;
public List<List<Integer>> combinationSum2(int[] candidates, int target) {
Arrays.sort(candidates); // 先进行排序
backtracking(candidates, target, 0);
return res;
} public void backtracking(int[] candidates, int target, int idx) {
// 找到了数字和为 target 的组合
if (sum == target) {
res.add(new LinkedList<>(path));
return;
} for (int i = idx; i < candidates.length && sum + candidates[i] <= target; i++) {
// 要对横向遍历时使用过的元素进行跳过 因为一样的元素在深度递归时已经把包含此元素的所有可能结果全部枚举过了
if (i > idx && candidates[i] == candidates[i - 1]) {
continue;
}
path.add(candidates[i]);
sum += candidates[i];
//System.out.println("sum="+sum);
//i++;
backtracking(candidates, target, i+1);
//i--;
//sum -= candidates[i];
sum-=path.getLast();
path.removeLast(); // 回溯,移除路径 path 最后一个元素
}
}
}

LeetCode 131.分割回文串

分析

切割子串,保证每个子串都是 回文串

找到所有的子串组合,判断子串是否是回文串,根据索引切割 startIndex endIndex if(start-end) is ; res.add

代码

class Solution {
List<List<String>> res = new ArrayList<>();
LinkedList<String> path = new LinkedList<>(); public List<List<String>> partition(String s) {
backTracking(s, 0);
return res;
} private void backTracking(String s, int startIndex) {
//如果起始位置大于s的大小,说明找到了一组分割方案
if (startIndex >= s.length()) {
res.add(new ArrayList(path));
return;
}
for (int i = startIndex; i < s.length(); i++) {
//如果是回文子串,则记录
if (isPalindrome(s, startIndex, i)) {
String str = s.substring(startIndex, i + 1);
path.add(str);
} else {
continue;
}
//起始位置后移,保证不重复
backTracking(s, i + 1);
// 一定要有回溯 开始下一种分割
path.removeLast();
}
}
//判断是否是回文串
private boolean isPalindrome(String s, int startIndex, int end) {
for (int i = startIndex, j = end; i < j; i++, j--) {
if (s.charAt(i) != s.charAt(j)) {
return false;
}
}
return true;
}
}

总结

  1. 题目给定的数据集如果使用数组的方式,要判断是否有序,没有说明有序最好视情排序
  2. 回溯横向移动的时机一定是某个纵向递归结束
  3. 看清题目要求,将串的所有子串都分割成回文子串
  4. 横向遍历逻辑 纵向递归startIndex++逻辑 回溯逻辑

LeetCode 39. 组合总和 40.组合总和II 131.分割回文串的更多相关文章

  1. LeetCode 131. 分割回文串(Palindrome Partitioning)

    131. 分割回文串 131. Palindrome Partitioning 题目描述 给定一个字符串 s,将 s 分割成一些子串,使每个子串都是回文串. 返回 s 所有可能的分割方案. LeetC ...

  2. Leetcode之回溯法专题-131. 分割回文串(Palindrome Partitioning)

    Leetcode之回溯法专题-131. 分割回文串(Palindrome Partitioning) 给定一个字符串 s,将 s 分割成一些子串,使每个子串都是回文串. 返回 s 所有可能的分割方案. ...

  3. Leetcode 131.分割回文串

    分割回文串 给定一个字符串 s,将 s 分割成一些子串,使每个子串都是回文串. 返回 s 所有可能的分割方案. 示例: 输入: "aab" 输出: [ ["aa" ...

  4. LeetCode 131. 分割回文串(Palindrome Partitioning)

    题目描述 给定一个字符串 s,将 s 分割成一些子串,使每个子串都是回文串. 返回 s 所有可能的分割方案. 示例: 输入: "aab" 输出: [ ["aa" ...

  5. Java实现 LeetCode 131 分割回文串

    131. 分割回文串 给定一个字符串 s,将 s 分割成一些子串,使每个子串都是回文串. 返回 s 所有可能的分割方案. 示例: 输入: "aab" 输出: [ ["aa ...

  6. Java实现 LeetCode 132 分割回文串 II(二)

    132. 分割回文串 II 给定一个字符串 s,将 s 分割成一些子串,使每个子串都是回文串. 返回符合要求的最少分割次数. 示例: 输入: "aab" 输出: 1 解释: 进行一 ...

  7. 【LEETCODE】72、分割回文串 III 第1278题

    package y2019.Algorithm.dynamicprogramming.hard; /** * @Auther: xiaof * @Date: 2019/12/11 08:59 * @D ...

  8. LeetCode 132. 分割回文串 II(Palindrome Partitioning II)

    题目描述 给定一个字符串 s,将 s 分割成一些子串,使每个子串都是回文串. 返回符合要求的最少分割次数. 示例: 输入: "aab" 输出: 1 解释: 进行一次分割就可将 s ...

  9. [Swift]LeetCode132. 分割回文串 II | Palindrome Partitioning II

    Given a string s, partition s such that every substring of the partition is a palindrome. Return the ...

  10. 分割回文串 II · Palindrome Partitioning II

    [抄题]: 给定一个字符串s,将s分割成一些子串,使每个子串都是回文. 返回s符合要求的的最少分割次数. [思维问题]: 不知道要用预处理字符串降低复杂度 [一句话思路]: 先把预处理获得s中回文串的 ...

随机推荐

  1. php+apache环境搭建

    [先安装apache] apache快速安装:https://www.cnblogs.com/brad93/p/16718104.html PHP安装教程参考:https://www.cnblogs. ...

  2. Excel2010表格内容被加密,无法编辑内容。

    Sub PasswordBreaker() Dim i As Integer, j As Integer, k As Integer Dim l As Integer, m As Integer, n ...

  3. 微软宣布 S2C2F 已被 OpenSSF 采用

    开源供应链安全对大多数 IT 领导者来说是个日益严峻的挑战,围绕确保开发人员在构建软件时如何使用和管理开源软件 (OSS) 依赖项的稳健策略至关重要.Microsoft 发布安全供应链消费框架 (S2 ...

  4. 直播报名|资深云原生架构师分享服务网格在腾讯 IT 业务的落地实践

    云原生在近几年的发展越来越火热,作为云上最佳实践而生的设计理念,也有了越来越多的实践案例,而一个个云原生案例的背后,是无声的巨大变革. 腾讯云主办首个云原生百科知识直播节目--<云原生正发声&g ...

  5. python 之异常捕获及处理(try--except)

    在python中,至少有两类错误,一种是程序语法错误,一种是程序异常. 所谓的语法错误是指你未按规定格式书写导致的错误,如:定义函数时,括号后面要紧跟英文冒号,若缺失则不能识别与运行,并抛出 Synt ...

  6. 宝塔渗透之msf代理入侵

    前言 在渗透中遇到内网主机是一层接一层的拓扑形式,可以采用多层代理加路由转发访问,便于在渗透中出现网段隔绝可以使用此方法跳出局限 实验环境 kali: 192.168.75.131 target-ce ...

  7. 数值分析——插值(一)、Runge现象

    在数值分析中,插值方法是基础且重要的.本文将介绍Lagrange插值公式与Newton插值公式.此外,针对Runge现象,本文给出了稍稍详细的讨论. 一.Lagrange插值公式 假设函数 \(y=f ...

  8. 前端必备ps切图方法,拿下ui设计师就靠它了。

    方法1(图层切图): 点击源psd文件中需要的图片,右击鼠标选择导出为png,保存即可.图片与文字在两个或两个以上图层上的时候,按住Control选择多个图层,右键选择合并图层(快捷键:Control ...

  9. [OpenCV实战]28 基于OpenCV的GUI库cvui

    目录 1 cvui的使用 1.1 如何在您的应用程序中添加cvui 1.2 基本的"hello world"应用程序 2 更高级的应用 3 代码 4 参考 有很多很棒的GUI库,例 ...

  10. [编程基础] C++多线程入门2-连接和分离线程

    原始C++标准仅支持单线程编程.新的C++标准(称为C++11或C++0x)于2011年发布.在C++11中,引入了新的线程库.因此运行本文程序需要C++至少符合C++11标准. 文章目录 2 连接和 ...