我们考虑 \(\sum_{i=l}^r{f_i(x)}\) 是个什么东西。首先这个奇怪的东西很好离线做,所以尽管题目要求强制在线,我们还是离线下来试试。

我们发现,我们可以 \(x\) 坐标从 \(1\) 到 \(200000\) 扫过去,对于每个 \(f_i\),在 \(x_{i,1}+1\) 和 \(x_{i,2}+1\) 两个位置打标记进行更改。这样整个扫描过程就是 \(O(k+n)\) 的。然后考虑维护答案,我们发现,\(y=y_1\) 和 \(y=y_2\) 其实可以写成 \(y=0x+y_1,y=0x+y_2\) 的形式。那么,我们的 \(f_i(x)\) 就可以统一写成 \(ax+b\) 的形式。则 \(\sum_{i=l}^r{f_i(x)}=(\sum_{i=l}^r{a_i})x+\sum_{i=l}^r{b_i}\)。

这样,我们就只需要维护 \(a\) 和 \(b\) 的区间和。我们分别开两个线段树维护 \(a\) 和 \(b\) 的区间和。每次更改,就单点修改位置 \(i\) 上面的 \(a_i\) 和 \(b_i\)。然后我们提前把所有的询问挂在自己的 \(x_i\) 上,处理完当前 \(x\) 上的所有操作之后,对所有的 \([l,r]\) 询问进行查询得到 \(\sum_{i=l}^r{a_i}\) 和 \(\sum_{i=l}^r{b_i}\)。

但是现在强制在线,怎么做呢?

我们发现,只要我们存储下每个 \(x\) 所对应的 \(a\) 和 \(b\) 序列,就可以每次快速得到答案。但是存储 \(a\) 和 \(b\) 显然不现实,我们就考虑可持久化线段树。我们找到原先的所有操作:单点修改、区间查询,这恰好是可以使用主席树完成的工作。又因为是静态的,我们完全可以把主席树处理出来之后,带到询问里去计算。

还有一个小小的问题,询问时的 \(x\) 是可能达到 \(10^9\) 的,如何做呢?我们发现 \(2\cdot 10^5\) 之后的 \(x\) 都已经到了第三阶段,也就是 \(y=y_2\),可以直接处理其前缀和,然后 \(O(1)\) 计算答案。

注意我们同一个 \(x\) 上可能有很多的操作,也可能没有操作,不能把 \(x\) 作为主席树的时间轴,而应当对每个 \(x\) 上的所有操作执行完之后,记录当前主席树的最新版本。

如果我们记 \(k\) 为 更改 操作中出现的最大 \(x\),那么时间复杂度就是 \(O(k+(n+m)\log n)\),空间复杂度 \(O(n\log n)\)。

#define rd(i,n) for(ll i=0;i<n;i++)
#define rp(i,n) for(ll i=1;i<=n;i++)
#define rep(i,a,b) for(ll i=a;i<=b;i++)
typedef long long ll;
class pst{
private:
ll sum[10000005];
int ls[10000005],rs[10000005],cnt,Len;
int root[400005],Ti;
inline void Init(int &i,int l,int r,int* a){
i=++cnt;
if(l==r){
sum[i]=a[l];
return;
}
int mid=l+r>>1;
Init(ls[i],l,mid,a);
Init(rs[i],mid+1,r,a);
sum[i]=sum[ls[i]]+sum[rs[i]];
}
inline void Modify(int &i,int his,int x,int v,int l,int r){
i=++cnt;
if(l==r){
sum[i]=v;
return;
}
int mid=l+r>>1;
if(x<=mid){
rs[i]=rs[his];
Modify(ls[i],ls[his],x,v,l,mid);
}else{
ls[i]=ls[his];
Modify(rs[i],rs[his],x,v,mid+1,r);
}
sum[i]=sum[ls[i]]+sum[rs[i]];
}
inline ll Query(int i,int L,int R,int l,int r){
if(!i)return 0;
if(L<=l&&r<=R)return sum[i];
int mid=l+r>>1;
ll res=0;
if(ls[i]&&L<=mid)res+=Query(ls[i],L,R,l,mid);
if(rs[i]&&R>mid)res+=Query(rs[i],L,R,mid+1,r);
return res;
}
public:
inline void init(int len,int* a){
Len=len;
Init(root[0],1,len,a);
}
inline void modify(int x,int v){
int cnt=++Ti;
Modify(root[cnt],root[cnt-1],x,v,1,Len);
}
inline ll query(int ti,int l,int r){
return Query(root[ti],l,r,1,Len);
}
inline int curver(){
return Ti;
}
}ta,tb;
const int N=75005;
const int M=200000;
const int P=1000000000;
int n,m,q,l,r,x,xl[N],xr[N],yl[N],yr[N],a[N],b[N],Empty[N];
ll sum[N];
int vera[M+5],verb[M+5];
vt<int>v1[M+5],v2[M+5];
signed main(){
ios::sync_with_stdio(false);
cin.tie(0);
n=in();
rp(i,n)xl[i]=in(),xr[i]=in(),yl[i]=in(),a[i]=in(),b[i]=in(),yr[i]=in();
rp(i,n)v1[xl[i]+1].pb(i),v2[xr[i]+1].pb(i);
ta.init(n,Empty);tb.init(n,yl);
rep(ti,1,M){
for(auto j:v1[ti]){
ta.modify(j,a[j]);
tb.modify(j,b[j]);
}
for(auto j:v2[ti]){
ta.modify(j,0);
tb.modify(j,yr[j]);
}
vera[ti]=ta.curver();
verb[ti]=tb.curver();
}
rp(i,n)sum[i]=sum[i-1]+yr[i];
q=in();
ll ans=0;
rd(_,q){
l=in(),r=in(),x=in();
x=(x+ans)%P;
if(x<=M){
ans=ta.query(vera[x],l,r)*x+tb.query(verb[x],l,r);
}else{
ans=sum[r]-sum[l-1];
}
out(ans)('\n');
}
return 0;
}
//Crayan_r

CF837G - Functions On The Segments的更多相关文章

  1. CF数据结构练习(二)

    1. 833D Red-Black Cobweb 大意: 给定树, 边为黑色或白色, 求所有黑白边比例在$[\frac{1}{2},2]$内的路径边权乘积的乘积. 考虑点分治, 记黑边数为$a$, 白 ...

  2. R Customizing graphics

    Customizing graphics GraphicsLaTeXLattice (Treillis) plots In this chapter (it tends to be overly co ...

  3. (转) Functions

    Functions Functions allow to structure programs in segments of code to perform individual tasks. In ...

  4. IDA .edata .rdata .idata .text segments

    .rdata is for const data. It is the read only version of the .data segment. .idata holds the import ...

  5. [LeetCode] Number of Segments in a String 字符串中的分段数量

    Count the number of segments in a string, where a segment is defined to be a contiguous sequence of ...

  6. Greenplum记录(一):主体结构、master、segments节点、interconnect、performance monitor

    结构:Client--master host--interconnect--segment host 每个节点都是单独的PG数据库,要获得最佳的性能需要对每个节点进行独立优化. master上不包含任 ...

  7. Application package 'AndroidManifest.xml' must have a minimum of 2 segments.

    看了源码就是packagename里面必须包含一个. 源码在: ./sdk/eclipse/plugins/com.android.ide.eclipse.adt/src/com/android/id ...

  8. asp.net MVC helper 和自定义函数@functions小结

    asp.net Razor 视图具有.cshtml后缀,可以轻松的实现c#代码和html标签的切换,大大提升了我们的开发效率.但是Razor语法还是有一些棉花糖值得我们了解一下,可以更加强劲的提升我们 ...

  9. segments&cache

    Segments 执行效果 命令  在 sense 里边执行  GET /abcd/_segments  前边的是索引名称,后边是请求 段信息 说明  索引是面向分片的,是由于索引是由一个或多个分片( ...

  10. 【跟着子迟品 underscore】Array Functions 相关源码拾遗 & 小结

    Why underscore 最近开始看 underscore.js 源码,并将 underscore.js 源码解读 放在了我的 2016 计划中. 阅读一些著名框架类库的源码,就好像和一个个大师对 ...

随机推荐

  1. Map的遍历方式,常用的key-value遍历方式

    在开发过程中经常会遇到 map 的遍历,本文将会介绍四种常用的 key-value 遍历方式 说明: 增强 for 循环遍历 先取出 map 的 keySet,进行遍历,再取出对应 key 的 val ...

  2. 接口Interface的作用不止是解耦

    简言: 好久没写博客了,今天手痒想写一写.废话少说,我们直入主题,相信大家对接口interface,这个单词一定不陌生.但是要说到它的作用,除了解耦之外,还有什么作用呢?可能大多数人都不是很清楚(大牛 ...

  3. C#从实习到搬砖

    日常唠唠 没事就聊聊我在c#上踩过的那些坑,和一些笔记 少点比较,多些谦虚 会者不难 原博:轩先生大冒险 2022.4.19 datagridview 修改表头 dataGridView1.Colum ...

  4. Kotlin + SpringBoot + JPA 服务端开发

    Kotlin + SpringBoot + JPA 服务端开发 本篇主要介绍一下 kotlin + springboot的服务端开发环境搭建 1.概述 Kotlin 是一个基于JVM的编程语言, 是I ...

  5. 【转载】SQL SERVER2008 修改数据库名相关的脚本

    -- 修改数据库名 -- 1.首先查找数据库是否占用,杀掉占用的id select spid from master.dbo.sysprocesses where dbid=db_id('ClothC ...

  6. nginx: [emerg] "auth_basic" directive is duplicate

    错误信息 nginx: [emerg] "auth_basic" directive is duplicate in phpmyadmin.conf:14 nginx: confi ...

  7. 用 Python 脚本实现电脑唤醒后自动拍照 截屏并发邮件通知

    背景 背景是这样的, 我的家里台式机常年 休眠, 并配置了 Wake On Lan (WOL) 方便远程唤醒并使用. 但是我发现, 偶尔台式机会被其他情况唤醒, 这时候我并不知道, 结果白白运行了好几 ...

  8. Markdown最基础语法内容

    基础常用语法(大多符号后都要跟一个空格) 一.标题 1.使用 # 号可表示 1-6 级标题,一级标题对应一个 # 号,二级标题对应两个 # 号,以此类推. #不要漏了符号和内容之间的空格 一级标题 # ...

  9. Joplin修改笔记存储位置

    默认存储路径 笔记的默认保存位置可以通过 工具 > 选项 > 通用选项 ,在最上方可以看到路径 使用Windows快捷方式启动 在Joplin的快捷方式上右击,选择属性,然后选择快捷方式选 ...

  10. 使用英特尔 Sapphire Rapids 加速 PyTorch Transformers 模型

    大约一年以前,我们 展示 了如何在第三代 英特尔至强可扩展 CPU (即 Ice Lake) 集群上分布式训练 Hugging Face transformers 模型.最近,英特尔发布了代号为 Sa ...