条件期望:Conditional Expectation 举例详解之入门之入门之草履虫都说听懂了
我知道有很多人理解不了 “条件期望” (Conditional Expectation) 这个东西,有的时候没看清把随机变量看成事件,把 \(\sigma\)-algebra 看成随机变量从而思路全错的时候,我也会觉得莫名奇妙。所以在这里用一个极其简单的例子解释一下,只要你是一只上过高中的草履虫那就能听懂。
我们来丢一枚质地均匀的硬币(意味着得到正面与反面的概率各为 \(\frac{1}{2}\)),连丢两次并记录两次结果。那么很容易可以写出全集 \(\Omega = \left\{ HH, HT, TH, TT \right\}\) ,\(H\) 和 \(T\) 分别代表正面和反面。现在是第一个需要稍加思考的地方,令 \(\mathcal{G}\) 为一个 \(\sigma\)-algebra,其中包括了第一次丢硬币结果的信息,请问 \(\mathcal{G}\) 是什么?
稍加思考,不难得出 \(\mathcal{G} = \left\{\Omega, ~ \emptyset, ~ \left\{ HH, HT \right\}, ~ \left\{ TT, TH \right\} \right\}\),这里也做出一个解释。首先要明确的是,\(\Omega\) 中的元素 (例如 \(HH\)) 和 \(\mathcal{G}\) 中的元素 (例如 \(\left\{ HH, HT \right\}\)) 之间的区别:前者是结果 (outcome),后者是事件 (event)。我们对于一次 “抽样”,只能得到一种结果,例如 \(HH\),代表丢两次硬币后得到两个正面的结果。但不同的结果由于共享某些特性,可以被划分在同一个事件当中,例如,丢两次硬币产生相同的结果应有两种,即同时为正面或同时为背面 (i.e. \(HH\) 或 \(TT\)),它们归属于 “丢两次硬币产生相同的结果” 的事件:\(\left\{ HH, TT \right\}\)。回到问题,现在我们已知了第一次丢硬币后结果的信息,也就是 "第一次丢硬币是正面还是背面",那么我们自然可以得出 \(\mathcal{G}\) 是由集类:\(\left\{ \left\{ HH, HT \right\}, ~ \left\{TT, TH \right\} \right\}\) 生成的 \(\sigma\)-algebra。这是因为第一次扔硬币的结果已经被确定——无论它是正面还是背面:如果是正面,那么结果无非两种:两次都正面或第一次正面第二次背面;如果是背面,结果也无非两种:两次都背面或第一次背面第二次正面。结合以下树结构,在得知第一次扔硬币结果的信息后,相当于从根 \(XX\) 来到了第一层 \(HX\) 或 \(TX\) (\(X\) 代表未知信息)。
同时,这也从另一个角度说明为什么概率论最终需要引入 “测度” 的定义——为了描述一种信息变化的过程。当我们并不知道第一次扔硬币的结果时,在全空间 \(\Omega\) 上定义的测度空间为 \((\Omega, \mathcal{F}, P)\),其中:
\]
where \(\mathcal{F}\) 的 cardinality: \(|\mathcal{F}| = 2^{4} = 16\)。
而当已知第一次的信息后,\(\sigma\)-algebra 随即收缩为:
\]
现在考虑条件期望: \(\mathbb{E}\left[ X ~ | ~ \mathcal{G} \right]\)。其中,\(\mathcal{G}\) 如上记作第一次丢完硬币后结果的全部信息,对于 \(\forall w \in \Omega:\) 随机变量 \(X\) 定义为:
a \qquad \mbox{if } ~ w = HH\\
b \qquad \mbox{if } ~ w = HT\\
c \qquad \mbox{if } ~ w = TH\\
d \qquad \mbox{if } ~ w = TT\\
\end{cases}
\]
其中 \(a, b, c, d \geq 0\)。
Definition. (Conditional Expectation)
令 \(X\) 为一个定义在 \((\Omega, \mathcal{F}, P)\) 上的非负随机变量。令 \(G_{1}, G_{2}, \ldots\) 为一个两两不相交的事件序列,且对于 \(\forall n \in \mathbb{N}^{+}: ~ P(G_{n}) > 0\),并且 \(\bigcup\limits_{n\in\mathbb{N}^{+}} G_{n} = \Omega\)。令 \(\mathcal{G}\) 为包含 \(\left\{ G_{1}, G_{2}, \ldots \right\}\) 的最小 \(\sigma\)-algebra,即,任意 \(\mathcal{G}\) 的元素都可以写作 \(\bigcup\limits_{n \in I} G_{n}\) 的形式,其中 \(I \subset \mathbb{N}^{+}\) (\(I\) 为 \(\mathbb{N}^{+}\) 的某些子集)。那么:
\]
首先,\(\mathbb{I}_{G_{n}}\)是一个随机变量,或者说函数:
1 \qquad \mbox{if } x \in G_{n}\\
0 \qquad \mbox{otherwise}
\end{cases}
\]
因此则可以判定,Conditional Expectation \(\mathbb{E}\left[ X ~ | ~ \mathcal{G} \right]\) 算出来也是一个随机变量,而并非常数。最后,我们可以发现一旦假设 \(w \in G_{n}\),那么一定意味着 \(w \notin G_{k}, ~ \forall k \in \mathbb{N}^{+}\setminus\left\{n\right\}\)。
回到扔硬币的例子。这里显然我们有:\(G_{1} = \left\{ HH, HT \right\}, ~ G_{2} = \left\{ TT, TH \right\}\),且 \(G_{1} \cup G_{2} = \Omega\)。那么。我们现在只需要依次:假设 \(w \in G_{n}\) 并求 \(\frac{\mathbb{E}\left[ X \cdot \mathbb{I}_{G_{n}} \right]}{P(G_{n})}\),最后将所有所求结果相加即可。
- 假设 \(w \in G_{1} = \left\{ HH, HT \right\}\),
\mathbb{E}\left[ X ~ | ~ \mathcal{G} \right](w) &= \frac{\mathbb{E}\left[ X \cdot \mathbb{I}_{G_{1}}, ~ w \in G_{1} \right]}{P(G_{1})}\\
&= \frac{\sum\limits_{w \in G_{1}}\mathbb{E}\left[ X \cdot \mathbb{I}_{G_{1}} ~ | ~ w \in G_{1} \right] \cdot P\big(\left\{ w \right\}\big)}{P(G_{1})}\\
&= \frac{\sum\limits_{w \in G_{1}} X(w) \cdot P\big(\left\{ w \right\}\big)}{P(G_{1})}\\
& = \frac{X(HH) \cdot P\big( \left\{ HH \right\} \big) + X(HT) \cdot P\big( \left\{ HT \right\} \big)}{P\big( \left\{ HH, HT \right\} \big)}\\
& = \frac{\frac{1}{4} \cdot a + \frac{1}{4} \cdot b}{\frac{1}{2}}\\
& = \frac{a + b}{2}
\end{align*}
\]
- 假设 \(w \in G_{2} = \left\{ TT, TH \right\}\),
\mathbb{E}\left[ X ~ | ~ \mathcal{G} \right](w) &= \frac{\mathbb{E}\left[ X \cdot \mathbb{I}_{G_{2}}, ~ w \in G_{2} \right]}{P(G_{2})}\\
&= \frac{\sum\limits_{w \in G_{2}}\mathbb{E}\left[ X \cdot \mathbb{I}_{G_{2}} ~ | ~ w \in G_{2} \right] \cdot P\big(\left\{ w \right\}\big)}{P(G_{2})}\\
&= \frac{\sum\limits_{w \in G_{2}} X(w) \cdot P\big(\left\{ w \right\}\big)}{P(G_{2})}\\
& = \frac{X(TT) \cdot P\big( \left\{ TT \right\} \big) + X(TH) \cdot P\big( \left\{ TH \right\} \big)}{P\big( \left\{ TT, TH \right\} \big)}\\
& = \frac{\frac{1}{4} \cdot c + \frac{1}{4} \cdot d}{\frac{1}{2}}\\
& = \frac{c + d}{2}
\end{align*}
\]
综上所述:
\frac{a + b}{2} \qquad \mbox{if } ~ w \in \left\{ HH, HT \right\}\\
\frac{c + d}{2} \qquad \mbox{if } ~ w \in \left\{ TT, TH \right\}\\
\end{cases}
\]
条件期望:Conditional Expectation 举例详解之入门之入门之草履虫都说听懂了的更多相关文章
- mybatis 详解(三)------入门实例(基于注解)
1.创建MySQL数据库:mybatisDemo和表:user 详情参考:mybatis 详解(二)------入门实例(基于XML) 一致 2.建立一个Java工程,并导入相应的jar包,具体目录如 ...
- 举例详解Python中的split()函数的使用方法
这篇文章主要介绍了举例详解Python中的split()函数的使用方法,split()函数的使用是Python学习当中的基础知识,通常用于将字符串切片并转换为列表,需要的朋友可以参考下 函数:sp ...
- iOS 多线程之NSOperation篇举例详解
这篇博客是接着总篇iOS GCD NSOperation NSThread等多线程各种举例详解写的一个支篇.总篇也包含了此文的链接.本文讲解的知识点有NSBlockOperationClick,队列, ...
- ios 多线程之NSThread篇举例详解
这篇博客是接着总篇iOS GCD NSOperation NSThread等多线程各种举例详解写的一个支篇.总篇也包含了此文的链接.本文讲解的知识点有NSThread的开始.取消.在当前线程执行任务. ...
- 【概率论】4-7:条件期望(Conditional Expectation)
title: [概率论]4-7:条件期望(Conditional Expectation) categories: - Mathematic - Probability keywords: - Exp ...
- WebView使用详解(二)——WebViewClient与常用事件监听
登录|注册 关闭 启舰 当乌龟有了梦想…… 目录视图 摘要视图 订阅 异步赠书:Kotlin领衔10本好书 免费直播:AI时代,机器学习如何入门? 程序员8 ...
- 大数据入门第十六天——流式计算之storm详解(一)入门与集群安装
一.概述 今天起就正式进入了流式计算.这里先解释一下流式计算的概念 离线计算 离线计算:批量获取数据.批量传输数据.周期性批量计算数据.数据展示 代表技术:Sqoop批量导入数据.HDFS批量存储数据 ...
- 大数据入门第七天——MapReduce详解(一)入门与简单示例
一.概述 1.map-reduce是什么 Hadoop MapReduce is a software framework for easily writing applications which ...
- 举例详解CSS中的cursor属性
这篇文章主要举例介绍了CSS中的cursor属性,包括zoom-in/zoom-out和grab/grabbing等常用属性值的使用,需要的朋友可以参考下 一.开篇之言 CSS3的领域范围已经渗透到了 ...
随机推荐
- redis集群的三种方式
Redis三种集群方式:主从复制,哨兵模式,Cluster集群. 主从复制 基本原理 当新建立一个从服务器时,从服务器将向主服务器发送SYNC命令,接收到SYNC命令后的主服务器会进行一次BGSAVE ...
- grafana监控配置
一.配置开启smtp服务 1.编辑grafana配置文件grafana.ini [smtp] enabled = true host = smtp.163.com:25 user = 157xxxx3 ...
- 第十五天python3 文件IO(一)
一.文件打开 open(path,flag[,encoding][,errors]) 参数说明: path:要打开文件的路径 flag:打开方式( r:以只读的方式打开文件,文件的描述符放在文件开头 ...
- Redis 5 种基本数据结构(String、List、Hash、Set、Sorted Set)详解 | JavaGuide
首发于:Redis 5 种基本数据结构详解 - JavaGuide 相关文章:Redis常见面试题总结(上) . Redis 5 种基本数据结构(String.List.Hash.Set.Sorted ...
- React + Antd Menu组件实现菜单树
准备好两个变量,一个用来保存平级菜单列表,一个用来保存遍历后的菜单树. 推荐后端返回平级菜单树,假如菜单比较多,可以直接结合find方法找到菜单,做搜索功能很省事. const [menuList, ...
- 【洛谷P1754 球迷购票问题】题解
传送门 卡特兰数经典 \(\texttt{AB}\) 分拆问题. 分析: 题意相当于排列 \(n\) 个 \(\texttt A\) 和 \(n\) 个 \(\texttt B\),使得相邻 \(\t ...
- WPF 截图控件之画笔(八)「仿微信」
前言 接着上周写的截图控件继续更新添加 画笔. 1.WPF实现截屏「仿微信」 2.WPF 实现截屏控件之移动(二)「仿微信」 3.WPF 截图控件之伸缩(三) 「仿微信」 4.WPF 截图控件之绘制方 ...
- 6.15 NOI 模拟
\(T1\ ckr\)与平方数 不会吧,不会吧,真有人不会积分,好吧,我真的一点也不会... 基本公式\(:\) \(1.\)多项式定积分的计算方法 \[f(x)=\sum_{i=0}^nc_ix^i ...
- 自己做一个RTOS
什么是操作系统?其实就是一个程序, 这个程序可以控制计算机的所有资源,对资源进行分配,包括CPU时间,内存,IO端口等,按一定规则分配给所需要的进程(进程?也就是一个程序,可以单独执行),并且自动控制 ...
- SpringBoot Excel导入导出
一.引入pom.xml依赖 <dependency> <groupId>org.springframework.boot</groupId> <artifac ...