Bellman-Ford算法 求有边数限制的最短路
这个算法也是紧承我们之前讲过的关于图论的内容,我们在前面分析图的时候说过了对于不同的图论问题,我们会有不同的求解方法,那么这里我们讲到Bellman-Ford算法是用于解决有边数限制的求解最短路问题。
我们先介绍一下我们之前讲过的Dijkstra算法为什么在这里失灵了,因为我们之前讲的Dijkstra算法是不适合求解含有负权边的最短路问题,原因如下图:

换言之,Dijkstra算法是找距离源点最近的点取更新别的点,这是一种贪心的思想,但是在具有负权边的问题时,局部最优解不一定是全局最优解,因为存在负权边,导致一开始大的边也有可能小下去。
Bellman—Ford算法的核心:对每一条边都进行松弛操作
每次松弛操作实际上是对相邻节点的访问(相当于广度优先搜索),第n次松弛操作保证了所有深度为n的路径最短。由于图的最短路径最长不会经过超过|m| - 1条边,所以可知Bellman—Ford算法所得为最短路径,也可知时间复杂度为O(mn)。
代码:
#include<bits/stdc++.h>
#define maxn 510
#define maxm 10010
using namespace std;
int dist[maxn],backup[maxn],n,m,k;
struct EDGE{
int x,y,z;
}edge[maxm];
void bellman_ford(){
memset(dist , 0x3f , sizeof(dist));
dist[1] = 0;
for(int i = 1; i<=k; i++){
memcpy(backup,dist,sizeof(dist));
for(int j = 1; j<=m; j++){
int a = edge[j].x , b = edge[j].y , w = edge[j].z ;
dist[b] = min(dist[b],backup[a] + w);
}
}
}
int main()
{
cin >> n >> m >> k;
for(int i = 1;i<=m;i++){
int a,b,c;
cin >> a >> b >> c;
edge[i].x = a; edge[i].y = b; edge[i].z = c;
}
bellman_ford();
if(dist[n] > 0x3f3f3f3f/2) cout << "impossible" << '\n';
else cout << dist[n] << '\n';
return 0;
}
分析:
·我们对dist数组还是初始化为0x3f3f3f3f,但是最后在判断的时候去要求 >=0x3f3f3f3f/2:
这是因为我们在进行松弛操作的时候是对每一条边都进行的, 所以本来时0x3f3f3f3f的地方可能被有负权边的路径给更新,所以我们只要保证他在一个量级就行了!
· 我们在每一次更新数值的时候,我们发现用到了一个backup数组,这个是用来干什么的呢:
我们在按顺序更新数值的时候,我们如果直接用dist数组直接更新,有可能会导致前一个刚被更新的紧接着去更新下一个,这样就不能保证边数的限制了!
所以我们就要把上一次的值copy到backup数组中!
Bellman-Ford算法 求有边数限制的最短路的更多相关文章
- Bellman - Ford 算法解决最短路径问题
Bellman - Ford 算法: 一:基本算法 对于单源最短路径问题,上一篇文章中介绍了 Dijkstra 算法,但是由于 Dijkstra 算法局限于解决非负权的最短路径问题,对于带负权的图就力 ...
- Bellman—Ford算法思想
---恢复内容开始--- Bellman—Ford算法能在更普遍的情况下(存在负权边)解决单源点最短路径问题.对于给定的带权(有向或无向)图G=(V,E),其源点为s,加权函数w是边集E的映射.对图G ...
- Dijkstra算法与Bellman - Ford算法示例(源自网上大牛的博客)【图论】
题意:题目大意:有N个点,给出从a点到b点的距离,当然a和b是互相可以抵达的,问从1到n的最短距离 poj2387 Description Bessie is out in the field and ...
- 853. 有边数限制的最短路(Bellman-ford算法模板)
给定一个n个点m条边的有向图,图中可能存在重边和自环, 边权可能为负数. 请你求出从1号点到n号点的最多经过k条边的最短距离,如果无法从1号点走到n号点,输出impossible. 注意:图中可能 存 ...
- Prim算法求权数和,POJ(1258)
题目链接:http://poj.org/problem?id=1258 解题报告: #include <iostream> #include <stdio.h> #includ ...
- acwing 853. 有边数限制的最短路 模板
地址 https://www.acwing.com/problem/content/description/855/ 给定一个n个点m条边的有向图,图中可能存在重边和自环, 边权可能为负数. 请你求出 ...
- AcWing 853. 有边数限制的最短路 bellman-ford 结构体
//存在负权值 处理负环 //如果能求出来 一般是不存在负权回路 //如果有负回路 那最小距离可能是负无穷 #include <cstring> #include <iostream ...
- poj1860 bellman—ford队列优化 Currency Exchange
Currency Exchange Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 22123 Accepted: 799 ...
- uva 558 - Wormholes(Bellman Ford判断负环)
题目链接:558 - Wormholes 题目大意:给出n和m,表示有n个点,然后给出m条边,然后判断给出的有向图中是否存在负环. 解题思路:利用Bellman Ford算法,若进行第n次松弛时,还能 ...
随机推荐
- 关于Java的=赋值操作和方法传递对象时的引用
原创:转载需注明原创地址 https://www.cnblogs.com/fanerwei222/p/11405920.html 下面通过一段代码和debug结果来展示Java中=操作的赋值改变过程. ...
- go基础——数组array
package main import "fmt" /* 数组: array数组属于值类型,存储的是数值本身,数据传递给其他变量时传递的是数据的副本. slice,map等属于引用 ...
- 5、Linux基础--etc(文件系统)、启动模式、单用户模式修改密码、安装目录、日志目录、状态目录
笔记 1.晨考 1.存放系统配置文件的目录 /etc 2.存储系统实时运行状态的目录 /proc 3.存储系统硬件接口的目录 /dev 4.查看系统挂载情况的命令 df -h 5.系统网卡文件路径 / ...
- Solution -「多校联训」朝鲜时蔬
\(\mathcal{Description}\) Link. 破案了,朝鲜时蔬 = 超现实树!(指写得像那什么一样的题面. 对于整数集 \(X\),定义其 好子集 为满足 \(Y\sub ...
- Solution -「洛谷 P4389」付公主的背包
\(\mathcal{Description}\) Link. 容量为 \(n\),\(m\) 种物品的无限背包,求凑出每种容量的方案数,对 \(998244353\) 取模. \(n,m ...
- 个人觉得好用的Idea插件
Intellij IDEA插件 排名不分先后 1. Codota 代码智能提示插件 只要打出首字母就能联想出一整条语句,这也太智能了,还显示了每条语句使用频率.原因是它学习了我的项目代码,总结出了我的 ...
- NTFS ADS(备用数据流)
NTFS Alternate Data Stream(ADS) 1993年微软推出了基于流行的NT平台的Windows NT操作系统.之后,NTFS作为WIndows开发基于NT的操作系统时的首选 ...
- 看我如何使用 shell 来获取所有 KVM 虚拟机的 IP 地址
文章目录 脚本说明 脚本展示 效果展示 此脚本的初衷是因为,KVM创建的桥接网卡的虚拟机,无法使用virsh domifaddr命令获取IP,而创建的nat网卡的虚拟机,则可以直接使用virsh do ...
- 手把手带你安装最小化suse 12 linux
当然. 你需要现有一个vmware,还要有一个suse的镜像,suse镜像可以直接去官网获取,只需要注册一个suse的账号就可以了,官网下载会有点慢,可以使用迅雷下载 F2 可以设置安装界面的语言,可 ...
- [入门到吐槽系列] Webix 10分钟入门 二 表单Form的使用
前言 继续接着上一篇的webix入门:https://www.cnblogs.com/zc22/p/15912342.html.今天完成剩下两个最重要的控件,表单和表格的使用.掌握了这两个,整个Web ...