Tilings-引言部分

proto前缀 原始的,原型的

一些形式化定义

各种各样的Tilings例子

Example 9.1.1

那个最经典的例子,用\(1\times2\)多米诺填充\(2\times n\)地板

Example 9.1.2

Example 9.1.3 Thurston and Lagarias-Romano

Example 9.1.4 Moore

Example :domino tilings of Aztec diamonds

Example:lozenge tilings of hexagons

Call a hexagon semiregular if its internal angles are 120 degrees and opposite sides are of equal length (a,b,c,a,b,c形式,看起来中心对称)

(more generally, call a polygon with an even number of sides semiregular if opposite sides are parallel and of equal length).

A semiregular hexagon with side-lengths a,b,c,a,b,c can be tiled by lozenges in exactly

\[\frac{H(a+b+c) H(a) H(b) H(c)}{H(a+b) H(a+c) H(b+c)}
\]

where \(H(0)=H(1)=1\) and \(H(n)=1 ! 2 ! \cdots(n-1) !\) for \(n>1\)

等价的表达式是

\[\prod_{i=1}^{a} \prod_{j=1}^{b} \prod_{k=1}^{c} \frac{i+j+k-1}{i+j+k-2}
\]

其实这个见的也多,大多数都是\(a=b=c\)的这种让你求方案数

#P-completeness

Hardly anyone believes that #P-complete problems can be solved efficiently. Beauquier, Nivat, Remila, and Robson [6], Moore and Robson [124], and Pak and Yang [129,130] have given examples of classes of two-dimensional tiling problems exhibiting #P-completeness. So there is little hope of solving the problem of counting tilings in its full generality, even in two dimensions. Still, there is much that can be done.

几乎没有人相信#P-complete问题可以被有效解决。Beauquier, Nivat, Remila, and Robson, Moore and Robson, and Pak and Yang已经给出了展现出#P-completeness的二维tiling类的一些例子。现在一般意义上的解决tiling计数问题希望渺茫,哪怕是在2维机会也是如此渺茫。然而,我们总是能做点什么工作。

By far the most successful theory of enumeration of two-dimensional tilings is the theory of perfect matchings of a planar graph.

目前为止二维tiling计数的最成功的理论是将tiling问题转化为平面图的完美匹配来解决。

机翻

求行列式

代数图的计数匹配问题是#P-complete [168],但是当图是平面的(或者离平面不是太远)时,计数匹配的问题可以简化为线性代数,具体来说,可以简化为矩阵的行列式(和Pfaffins)的评估 。这项技术是由数学物理学家Kasteleyn开发的,他(使用物理学家的语言)认为他的工作为评估“二聚体模型的分割函数”提供了一种方法(我们将在稍后解释该语言)。多亏了Kasteleyn的工作[78] [79] [80],许多与平面上的枚举有关的理论体系都可以看作是行列式评估领域的子专业,这是由Krattenthale和其他学者开发的(例如参见[93]和[95])。但是,在许多情况下,出现的矩阵不属于可以用已有的行列式分析方法处理的矩阵类;在这种情况下,唯一已知的求解行列式的方法将会很大程度上依赖分析这个tiling的组合和几何性质。

书用的是Handbook of Enumerative Combinatorics by Miklos Bona

资料来自网络

【读书笔记】组合计数-Tilings-引言部分的更多相关文章

  1. WC集训DAY2笔记 组合计数 part.1

    目录 WC集训DAY2笔记 组合计数 part.1 基础知识 组合恒等式 错排数 卡特兰数 斯特林数 伯努利数 贝尔数 调和级数 后记 补完了几天前写的东西 WC集训DAY2笔记 组合计数 part. ...

  2. 《algorithms Unlocked》读书笔记3——计数排序

    <Algorithms Unlocked>是 <算法导论>的合著者之一 Thomas H. Cormen 写的一本算法基础,算是啃CLRS前的开胃菜和辅助教材.如果CLRS的厚 ...

  3. 【英语魔法俱乐部——读书笔记】 2 中级句型-复句&合句(Complex Sentences、Compound Sentences)

    [英语魔法俱乐部——读书笔记] 2 中级句型-复句&合句(Complex Sentences.Compound Sentences):(2.1)名词从句.(2.2)副词从句.(2.3)关系从句 ...

  4. 《TCP/IP详解卷1:协议》第1章 概述-读书笔记

    章节回顾: <TCP/IP详解卷1:协议>第1章 概述-读书笔记 <TCP/IP详解卷1:协议>第2章 链路层-读书笔记 <TCP/IP详解卷1:协议>第3章 IP ...

  5. 《TCP/IP详解卷1:协议》第17、18章 TCP:传输控制协议(1)-读书笔记

    章节回顾: <TCP/IP详解卷1:协议>第1章 概述-读书笔记 <TCP/IP详解卷1:协议>第2章 链路层-读书笔记 <TCP/IP详解卷1:协议>第3章 IP ...

  6. 《Linux内核设计与实现》读书笔记(十二)- 内存管理【转】

    转自:http://www.cnblogs.com/wang_yb/archive/2013/05/23/3095907.html 内核的内存使用不像用户空间那样随意,内核的内存出现错误时也只有靠自己 ...

  7. think straight系列读书笔记之《暗时间》

    一周一篇读书笔记,这是第零篇,为啥从零计数,你们懂的~   大二读了<暗时间>,这本书带我进入了心理学的大门,让我开始关注思维,专注,效率,认知,记忆等东西.两年之后重读这本书,依然收获很 ...

  8. 《深入java虚拟机》读书笔记之垃圾收集器与内存分配策略

    前言 该读书笔记用于记录在学习<深入理解Java虚拟机--JVM高级特性与最佳实践>一书中的一些重要知识点,对其中的部分内容进行归纳,或者是对其中不明白的地方做一些注释.主要是方便之后进行 ...

  9. C++Windows核心编程读书笔记

    转自:http://www.makaidong.com/%E5%8D%9A%E5%AE%A2%E5%9B%AD%E6%96%87/71405.shtml "C++Windows核心编程读书笔 ...

  10. Javascript DOM 编程艺术(第二版)读书笔记——基本语法

    Javascript DOM 编程艺术(第二版),英Jeremy Keith.加Jeffrey Sambells著,杨涛.王建桥等译,人民邮电出版社. 学到这的时候,我发现一个问题:学习过程中,相当一 ...

随机推荐

  1. NX二次开发,对象上色

    #include <uf_defs.h> #include <uf_ui_types.h> #include <uf.h> #include <uf_ui.h ...

  2. continue的使用

    continue是终止本次循环,进行下一个循环如果要跳到最开始的循环abc : for(){ for(){ for(){ continue abc; } }}

  3. HDK_节点开发:SOP_ComputeVisibility

    Houdini版本:18.5.596 节点概述:剔除模型在某视线方向下所有不可见面. 参数界面: 输入:三角化的模型(左),可选输入遮挡模型(右) 原理:在画布上绘制该方向上的最近深度,作为判定各面可 ...

  4. Spectracom 默认口令

    网络空间搜索: FoFa 找到页面: 默认口令 在github上去找 登陆成功 End!!!

  5. 07 从RDD创建DataFrame

    1.pandas df 与 spark df的相互转换 df_s=spark.createDataFrame(df_p) df_p=df_s.toPandas() 2. Spark与Pandas中Da ...

  6. nkIO方法

    import java.util.*; public class Main{ public static void main(String args[]){ Scanner sc = new Scan ...

  7. vue element tree 上移下移

    效果图 需求是:上边没有了应该取最后一个    下边没有了 应该取第一个 直接上代码: <template> <el-tree :key="tree_key" v ...

  8. 4组-Beta冲刺-2/5

    一.基本情况 队名:摸鲨鱼小队 组长博客:https://www.cnblogs.com/smallgrape/p/15595704.html github链接:https://github.com/ ...

  9. 【项目记录】1:一些没有一次安装成功地Python模块

    记录一下,下次查找方便. 1.PIL包 PIL名称已经换成了Pillow 所以使用: pip3 install pil 会报错. 正确方法是: pip3 install pillow 2.win32c ...

  10. Android 自定义View (三)

    一.前言 上节 讲解了旋转圆环基本的实现方法.本文将在此基础上进一步改进,在属性文件中自定义控件属性,避免代码中显式调用setXXX() 方法. 二.流程 首先,在资源文件 values 中新建一个 ...