poj-3264-Balanced Lineup
poj 3264 Balanced Lineup
link: http://poj.org/problem?id=3264
| Time Limit: 5000MS | Memory Limit: 65536K | |
| Total Submissions: 48747 | Accepted: 22833 | |
| Case Time Limit: 2000MS | ||
Description
For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.
Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.
Input
Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i
Lines N+2..N+Q+1: Two integers A and B (1 ≤ A ≤ B ≤ N), representing the range of cows from A to B inclusive.
Output
Sample Input
6 3
1
7
3
4
2
5
1 5
4 6
2 2
Sample Output
6
3
0
Source
题解:
快速找到一个区间[a, b] 之间的最大值和最小值的差;
经典的RMQ问题。 利用Sparse Table算法, 动态规划求解。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
const int maxn = 50005; int n, m, num[maxn], dp1[maxn][18], dp2[maxn][18]; void BuildIndex(){
for(int i=0; i<n;++i){
dp1[i][0] = i;
dp2[i][0] = i;
}
for(int i=1; (1<<i)<=n; ++i){
for(int j=0; j+(1<<i)-1<n; ++j){
// find max
if(num[dp1[j][i-1]] > num[dp1[j+(1<<(i-1))][i-1]]){
dp1[j][i] = dp1[j][i-1];
}else{
dp1[j][i] = dp1[j+(1<<(i-1))][i-1];
} // find min
if(num[dp2[j][i-1]] < num[dp2[j+(1<<(i-1))][i-1]]){
dp2[j][i] = dp2[j][i-1];
}else{
dp2[j][i] = dp2[j+(1<<(i-1))][i-1];
}
}
}
} int FindMaxIndex(int start, int end){
int k = (int)((log((end - start + 1)*1.0))/log(2.0));
if(num[dp1[start][k]] > num[dp1[end-(1<<k)+1][k]]){
return dp1[start][k];
}else{
return dp1[end-(1<<k)+1][k];
}
}
int FindMinIndex(int start, int end){
int k = (int)((log((end - start + 1)*1.0))/log(2.0));
if(num[dp2[start][k]] > num[dp2[end-(1<<k)+1][k]]){
return dp2[end-(1<<k)+1][k];
}else{
return dp2[start][k];
}
} int main(){
freopen("in.txt", "r", stdin); int ans1, ans2, x, y;
while(scanf("%d %d", &n, &m) != EOF){
for(int i=0; i<n; ++i){
scanf("%d", &num[i]);
}
BuildIndex();
while(m--){
scanf("%d %d", &x, &y);
if(x > y){ swap(x, y); }
ans1 = FindMinIndex(x-1, y-1);
ans2 = FindMaxIndex(x-1, y-1);
printf("%d\n", (num[ans2] - num[ans1]) );
}
}
return 0;
}
poj-3264-Balanced Lineup的更多相关文章
- Poj 3264 Balanced Lineup RMQ模板
题目链接: Poj 3264 Balanced Lineup 题目描述: 给出一个n个数的序列,有q个查询,每次查询区间[l, r]内的最大值与最小值的绝对值. 解题思路: 很模板的RMQ模板题,在这 ...
- POJ 3264 Balanced Lineup 【ST表 静态RMQ】
传送门:http://poj.org/problem?id=3264 Balanced Lineup Time Limit: 5000MS Memory Limit: 65536K Total S ...
- poj 3264 Balanced Lineup (RMQ)
/******************************************************* 题目: Balanced Lineup(poj 3264) 链接: http://po ...
- POJ 3264 Balanced Lineup【线段树区间查询求最大值和最小值】
Balanced Lineup Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 53703 Accepted: 25237 ...
- POJ - 3264——Balanced Lineup(入门线段树)
Balanced Lineup Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 68466 Accepted: 31752 ...
- poj 3264 Balanced Lineup 题解
Balanced Lineup Time Limit: 5000MS Memory Limit: 65536KB 64bit IO Format: %I64d & %I64u Subm ...
- poj 3264:Balanced Lineup(线段树,经典题)
Balanced Lineup Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 32820 Accepted: 15447 ...
- POJ 3264 Balanced Lineup 线段树 第三题
Balanced Lineup Description For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line ...
- poj 3264 Balanced Lineup (线段树)
Balanced Lineup Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 42489 Accepted: 20000 ...
- poj 3264 Balanced Lineup(RMQ裸题)
Balanced Lineup Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 43168 Accepted: 20276 ...
随机推荐
- IBM实习
来到北京,进入IBM实习已经好多天了,两个月的暑假,两个月夏日在这里度过了,并将在未来个一个月里面,仍将在这里走过,但是我却一无所成,现在仍然只在徘徊中游走,丹迪什么时候能真正懂得实习的难得可贵,懂得 ...
- 基于WebGL的三维地形渲染
1.生成WebMap页面 #!/usr/bin/env python # -*- coding: utf-8 -*- import subprocess from jinja2 import Envi ...
- SharePoint 2013 Excel Services ECMAScript 示例之明日限行
前言:最近遇到一个“明日限行”的功能,北京的交通啊,这个不在今天讨论范围内,暂不吐槽,想想代码开发,还要写WebPart部署,很麻烦,而且部署服务器,需要领导审批,想绕过这个麻烦事儿,就想到客户端了, ...
- iOS UIPageViewController缺陷
为什么弃用UIPageViewController?问题1:设置UIPageViewController为UIPageViewControllerTransitionStyleScroll且调用set ...
- svn报错:“Previous operation has not finished; run 'cleanup' if it was interrupted“ 的解决方法
今天改完代码提交时,提交接近完成但窗口还未关闭电脑蓝屏了.夏天来了,电脑比人还怕热啊~~~ 心里咯噔一下,估计svn又会出一些莫名其妙的问题了. 果然,待电脑重启后开eclipse,文件还是新增状 ...
- Windows下使用Xshell建立反向隧道
反向隧道是一个进行内网穿透的简单而有用的方法.在Linux下通过OpenSSH和AutoSSH可以很容易地建立稳定的反向隧道.但是在Windows下,还能看到有人特意装个Cygwin来运行这些工具…… ...
- Linux No volume control GStreamer plugins and/or devices found
案例环境:Oracle Linux Server release 5.7 进入Oracle Linux系统后,在右上角点击声音图标时,则会弹出如下报错窗口: The volume control di ...
- MySQL 更新语句技巧
一. 多表更新 1. 数据准备 mysql> mysql> select goods_id, goods_name,goods_cate from tdb_goods; +-------- ...
- C++智能指针详解
本文出自http://mxdxm.iteye.com/ 一.简介 由于 C++ 语言没有自动内存回收机制,程序员每次 new 出来的内存都要手动 delete.程序员忘记 delete,流程太复杂,最 ...
- WPF DEV控件-ChartControl用法
WPF常用的第三方控件集,DevExpress 下面介绍如何生成Chart界面: <dxc:ChartControl AnimationMode="OnDataChanged" ...