poj-3264-Balanced Lineup
poj 3264 Balanced Lineup
link: http://poj.org/problem?id=3264
| Time Limit: 5000MS | Memory Limit: 65536K | |
| Total Submissions: 48747 | Accepted: 22833 | |
| Case Time Limit: 2000MS | ||
Description
For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.
Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.
Input
Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i
Lines N+2..N+Q+1: Two integers A and B (1 ≤ A ≤ B ≤ N), representing the range of cows from A to B inclusive.
Output
Sample Input
6 3
1
7
3
4
2
5
1 5
4 6
2 2
Sample Output
6
3
0
Source
题解:
快速找到一个区间[a, b] 之间的最大值和最小值的差;
经典的RMQ问题。 利用Sparse Table算法, 动态规划求解。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
const int maxn = 50005; int n, m, num[maxn], dp1[maxn][18], dp2[maxn][18]; void BuildIndex(){
for(int i=0; i<n;++i){
dp1[i][0] = i;
dp2[i][0] = i;
}
for(int i=1; (1<<i)<=n; ++i){
for(int j=0; j+(1<<i)-1<n; ++j){
// find max
if(num[dp1[j][i-1]] > num[dp1[j+(1<<(i-1))][i-1]]){
dp1[j][i] = dp1[j][i-1];
}else{
dp1[j][i] = dp1[j+(1<<(i-1))][i-1];
} // find min
if(num[dp2[j][i-1]] < num[dp2[j+(1<<(i-1))][i-1]]){
dp2[j][i] = dp2[j][i-1];
}else{
dp2[j][i] = dp2[j+(1<<(i-1))][i-1];
}
}
}
} int FindMaxIndex(int start, int end){
int k = (int)((log((end - start + 1)*1.0))/log(2.0));
if(num[dp1[start][k]] > num[dp1[end-(1<<k)+1][k]]){
return dp1[start][k];
}else{
return dp1[end-(1<<k)+1][k];
}
}
int FindMinIndex(int start, int end){
int k = (int)((log((end - start + 1)*1.0))/log(2.0));
if(num[dp2[start][k]] > num[dp2[end-(1<<k)+1][k]]){
return dp2[end-(1<<k)+1][k];
}else{
return dp2[start][k];
}
} int main(){
freopen("in.txt", "r", stdin); int ans1, ans2, x, y;
while(scanf("%d %d", &n, &m) != EOF){
for(int i=0; i<n; ++i){
scanf("%d", &num[i]);
}
BuildIndex();
while(m--){
scanf("%d %d", &x, &y);
if(x > y){ swap(x, y); }
ans1 = FindMinIndex(x-1, y-1);
ans2 = FindMaxIndex(x-1, y-1);
printf("%d\n", (num[ans2] - num[ans1]) );
}
}
return 0;
}
poj-3264-Balanced Lineup的更多相关文章
- Poj 3264 Balanced Lineup RMQ模板
题目链接: Poj 3264 Balanced Lineup 题目描述: 给出一个n个数的序列,有q个查询,每次查询区间[l, r]内的最大值与最小值的绝对值. 解题思路: 很模板的RMQ模板题,在这 ...
- POJ 3264 Balanced Lineup 【ST表 静态RMQ】
传送门:http://poj.org/problem?id=3264 Balanced Lineup Time Limit: 5000MS Memory Limit: 65536K Total S ...
- poj 3264 Balanced Lineup (RMQ)
/******************************************************* 题目: Balanced Lineup(poj 3264) 链接: http://po ...
- POJ 3264 Balanced Lineup【线段树区间查询求最大值和最小值】
Balanced Lineup Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 53703 Accepted: 25237 ...
- POJ - 3264——Balanced Lineup(入门线段树)
Balanced Lineup Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 68466 Accepted: 31752 ...
- poj 3264 Balanced Lineup 题解
Balanced Lineup Time Limit: 5000MS Memory Limit: 65536KB 64bit IO Format: %I64d & %I64u Subm ...
- poj 3264:Balanced Lineup(线段树,经典题)
Balanced Lineup Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 32820 Accepted: 15447 ...
- POJ 3264 Balanced Lineup 线段树 第三题
Balanced Lineup Description For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line ...
- poj 3264 Balanced Lineup (线段树)
Balanced Lineup Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 42489 Accepted: 20000 ...
- poj 3264 Balanced Lineup(RMQ裸题)
Balanced Lineup Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 43168 Accepted: 20276 ...
随机推荐
- ImageLoader配合ImageSwitcher的使用
先在MyApplication中初始化ImageLoader initImageLoader(getApplicationContext()); /** * 初始化ImageLoader * 如果你经 ...
- iOS之9.3真机适配-Could not find Developer Disk Image问题
Could not find Developer Disk Image 这是由于真机系统过高或者过低,Xcode中没有匹配的配置包文件,我们可以通过这个路径进入配置包的存放目录: /Applicati ...
- Request 和 Response 原理
* Request 和 Response 原理: * request对象和response对象由服务器创建,我们只需要在service方法中使用这两个对象即可 * 继承体系结构: ...
- Android应用开发基础之十二:版本控制
为什么需要版本控制? 场景1: 你的代码正常工作 你改了其中的几行代码 程序出了问题 你把代码改回来 程序还是不能正常工作——为什么? 场景2: 你的程序昨天还能正常运行 昨天晚上你修改了很多内容,做 ...
- JAVA Map
基本特性: 维持健值对的集合接口,健不可以重复,每一个健只能映射到一个值. Map替代了原来的虚拟类Directory. Map提供了三种集合视角,keys(KeySet),values(Values ...
- linux shell for循环使用命令中读取到的值实例
#!/bin/bash file="states" for state in `cat $file` do echo "Visit beautiful $state&qu ...
- 关于 Java 数组的 12 个最佳方法
1. 声明一个数组 String[] aArray = new String[5]; String[] bArray = {"a","b","c&q ...
- 关于Oracle报“ORA-12514 TNS 监听程序当前无法识别连接描述符中请求服务”错误
关于Oracle报“ORA-12514 TNS 监听程序当前无法识别连接描述符中请求服务”错误原因:listener.ora中没有指定监听服务器名. 如下是解决思路: 尝试1.通过重启服务的方式启动数 ...
- class.c 添加中文注释(2)
/* Class Device Stuff */ int class_device_create_file(struct class_device * class_dev, const struct ...
- 001.mysql安装(lnmp)
mysql官方网站:http://dev.mysql.com/downloads/ Linux环境:刚安装的32位的“最小化安装“的CentOS 6.7 mysql版本:本次实验安装的是mysql5. ...