1. 对列表和数组进行切片

1.1 切片索引

众所周知,Python中的列表和numpy数组都支持用begin: end语法来表示[begin, end)区间的的切片索引:

import numpy as np
my_list= [1, 2, 3, 4, 5]
print(my_list[2: 4]) # [3, 4] my_arr = np.array([1, 2, 3, 4, 5])
print(my_arr[2: 4]) # [3 4]

以上操作实际上等同于用slice切片索引对象对其进行切片:

print(my_list[slice(2, 4)]) # [3, 4]
print(my_arr[slice(2, 4)]) # [3 4]

numpy数组还支持用列表和numpy数组来表示切片索引,而列表则不支持:

print(my_arr[[2, 3]]) # [3 4]
print(my_arr[np.arange(2, 4)]) # [3, 4] print(my_list[[2, 3]]) # TypeError: list indices must be integers or slices, not list
print(my_list[np.arange(2, 4)]) # TypeError: only integer scalar arrays can be converted to a scalar index

Pytorch的torch.utils.data.Dataset数据集支持单元素索引,但不支持切片:

from torchvision.datasets import FashionMNIST
from torchvision.transforms import Compose, ToTensor, Normalize transform = Compose(
[ToTensor(),
Normalize((0.1307,), (0.3081,))
]
) data = FashionMNIST(
root="data",
download=True,
train=True,
transform=transform
) print(data[0], data[1]) # (tensor(...), 0) (tensor(...), 0)
print(data[[0, 1]]) # ValueError: only one element tensors can be converted to Python scalars
print(data[: 2]) # ValueError: only one element tensors can be converted to Python scalars

要想对torch.utils.data.Dataset进行切片,需要创建Subset对象:

import torch
indices = [0, 1] # or indices = np.arange(2)
data_0to1 = torch.utils.data.Subset(data, indices)
print(data_0to1) # <torch.utils.data.dataset.Subset object at 0x1064dd760>

1.2 对切片索引进行命名

有时我们会使用充满硬编码的切片索引,这使得代码难以阅读,比如下面这段代码:

record = ".....100...513.25.."
cost = int(record[5: 8]) * float(record[11: 17])
print(cost) # 51325.0

与其这样做,我们不如对切片进行命名:

SHARES = slice(5, 8)
PRICE = slice(11, 17)
cost = int(record[SHARES]) * float(record[PRICE])
print(cost) # 51325.0

在后一种版本中,由于避免了使用许多神秘难懂的硬编码索引,我们的代码就变得清晰了许多。

正如我们前面所说,这里的slice()函数会创建一个slice类型的切片对象,可以用在任何运行切片的地方:

items = [0, 1, 2, 3, 4, 5, 6]
a = slice(2, 4)
print(items[2: 4]) # [2, 3]
print(items[a]) # [2, 3]
items[a] = [10, 11]
print(items) # [0, 1, 10, 11, 4, 5, 6]
del items[a]
print(items) # [0, 1, 4, 5, 6]

如果有一个slice对象的实例s,可以分别用过s.starts.stop以及s.step属性来跌倒关于该对象的信息。例如:

a = slice(5, 50, 2)
print(a.start, a.stop, a.step) # 5 10 2

此外,可以通过使用indices(size)方法将切片映射到特定大小的序列上。这会返回一个[start, stop, step)元组,所有的值都已经恰当地限制在边界以内(当做索引操作时可避免出现IndexError异常)。例如:

s = 'HelloWorld'
print(a.indices(len(s)))
print(*a.indices(len(s)))
for i in range(*a.indices(len(s))):
print(s[i])
# W
# r
# d

2. 对迭代器做切片操作

要对迭代器和生成器做切片操作,普通的切片操作符在这里是不管用的:

def count(n):
while True:
yield n
n += 1
c = count(0)
print(c[10: 20]) # TypeError: 'generator' object is not subscriptable

此时,itertools.islice()函数是最完美的选择:

import itertools
for x in itertools.islice(c, 10, 20):
print(x)
# 10
# 11
# 12
# 13
# 14
# 15
# 16
# 17
# 18
# 19

注意,迭代器和生成器之所以没法执行普通的切片操作,这是因为不知道它们的长度是多少(而且它们也没有实现索引)。islice()产生的结果是一个迭代器,它可以产生出所需要的切片元素,但这是通过访问并丢弃起始索引之前的元素来实现的。之后的元素会由islice对象产生出来,直到到达结束索引为止。

还有一点需要重点强调的是islice()会消耗掉所提供的的迭代器中数据。由于迭代器中的元素只能访问一次,没法倒回去,因此这里就需要引起我们的注意了。如果之后还需要倒回去访问前面的元素,那也许就应该先将数据转到列表中去。

参考

Python: 列表、数组及迭代器切片的区别及联系的更多相关文章

  1. [python01] python列表,元组对比Erlang的区别总结

    数据结构是通过某种方式组织在一起的数据元素的集合,这些数据元素可以是数字,字符,甚至可以是其他的数据结构. python最基本的数据结构是sequence(序列):6种内建的序列:列表,元组,字符串, ...

  2. python 列表、元组、字典的区别

    区别: 相互转换:https://www.cnblogs.com/louis-w/p/8391147.html 一.列表 list [1,[2,'AA'],5,'orderl'] 1.任意对象的有序集 ...

  3. Python 列表推导、迭代器与生成器

    1.列表推导 1 2 3 4 5 6 7 8 9 10 11 numbers = [i for i in range(10) if i % 2 == 0] print(numbers)   seq = ...

  4. Python 列表表达式 ,迭代器(1)

    python 环境 3.5 1.列表: s = []; for i in s: i = handleFunction(i); s.append(i) .列表 s=[handleFunction(i) ...

  5. python列表与字符串、元组的区别以及列表引用的方式

    一.字符串 字符串也可以用下标取值.切片.for循环.len()取长度以及 in 和 not in 来进行操作. 但字符串是不可变的,不能被更改.只能构造一个“新的”字符串来存取你想要修改后的数据. ...

  6. python列表的索引与切片

    <1>.python的列表 索引方式: 例如,list1 = ['张三','男','33','江苏','硕士','已婚',['身高178','体重72']] 1.正向单索引 print(l ...

  7. Python: 列表,元组,字典的区别

    Python中有3种内建的数据结构:列表,元组和字典 1.列表 list是处理一组有序项目的数据结构,即可以在一个列表中存储一个序列的项目.列表中项目应该包括在方括号中,这样python就知道是在指明 ...

  8. Python 列表表达式 ,迭代器(2) Yield

    .yield 暂存为list def max_generator(numbers): current_max = for i in numbers: current_max = max(i, curr ...

  9. Python进阶:迭代器与迭代器切片

    2018-12-31 更新声明:切片系列文章本是分三篇写成,现已合并成一篇.合并后,修正了一些严重的错误(如自定义序列切片的部分),还对行文结构与章节衔接做了大量改动.原系列的单篇就不删除了,毕竟也是 ...

随机推荐

  1. 小米电视去广告之adb实战

    近日闲来无事,对小米电视的开机广告.系统内置应用决定进行一波优化 安卓系统大部分都有一个"开发者模式", 在这个模式下可以放开手脚对系统进行一系列操作 此次要针对小米电视的UI使用 ...

  2. JVM调优篇

    点赞再看,养成习惯,微信搜索「小大白日志」关注这个搬砖人. 文章不定期同步公众号,还有各种一线大厂面试原题.我的学习系列笔记. 基础概念 一般JVM调优,重点在于调整JVM堆大小.调整垃圾回收器 jv ...

  3. Bugku CTF练习题---MISC---telnet

    Bugku CTF练习题---MISC---telnet flag:flag{d316759c281bf925d600be698a4973d5} 解题步骤: 1.观察题目,下载附件 2.拿到手以后发现 ...

  4. ucore lab5 用户进程管理 学习笔记

    近几日睡眠质量不佳,脑袋一困就没法干活,今天总算时补完了.LAB5难度比LAB4要高,想要理解所有细节时比较困难.但毕竟咱不是要真去写一个OS,所以一些个实现细节就当成黑箱略过了. 这节加上了用户进程 ...

  5. 如何形象简单地理解java中只有值传递,而没有引用传递?

    首先,java中只有值传递,没有引用传递.可以说是"传递的引用(地址)",而不能说是"按引用传递". 按值传递意味着当将一个参数传递给一个函数时,函数接收的是原 ...

  6. scrapy架构与目录介绍、scrapy解析数据、配置相关、全站爬取cnblogs数据、存储数据、爬虫中间件、加代理、加header、集成selenium

    今日内容概要 scrapy架构和目录介绍 scrapy解析数据 setting中相关配置 全站爬取cnblgos文章 存储数据 爬虫中间件和下载中间件 加代理,加header,集成selenium 内 ...

  7. MySQL基准测试工具

    一.基准测试 基准测试(benchmark)是针对系统设计的一种压力测试. 基准测试是简化了的压力测试. 1.1 常见指标 TPS QPS 响应时间 并发量 1.2 收集与分析数据脚本 收集数据的sh ...

  8. 好客租房55-props深入(2props校验)

    对于组件来说 props是外来的 无法保证使用者传入什么格式的数据 传入的数据格式不对 可能会导致组件内部报错 关键问题:不知道报错的具体原因 1安装包props-types 2导入props-typ ...

  9. linux篇-linux 下tomcat服务每天定时启动

    1l先准备一个脚本 #!/bin/sh #./etc/profile export JAVA_HOME=/usr/java/jdk1.6.0_45 sh /home/tomcat-bingchuang ...

  10. 牛客多校赛2K Keyboard Free

    Description 给定 \(3\) 个同心圆,半径分别为 \(r1,r2,r3\) ,三个点分别随机分布在三个圆上,求这个三角形期望下的面积. Solution 首先可以固定 \(A\) 点,枚 ...