[NOIP2017]宝藏

题目描述

参与考古挖掘的小明得到了一份藏宝图,藏宝图上标出了 n 个深埋在地下的宝藏屋, 也给出了这 n 个宝藏屋之间可供开发的 m 条道路和它们的长度。

小明决心亲自前往挖掘所有宝藏屋中的宝藏。但是,每个宝藏屋距离地面都很远, 也就是说,从地面打通一条到某个宝藏屋的道路是很困难的,而开发宝藏屋之间的道路 则相对容易很多。

小明的决心感动了考古挖掘的赞助商,赞助商决定免费赞助他打通一条从地面到某 个宝藏屋的通道,通往哪个宝藏屋则由小明来决定。

在此基础上,小明还需要考虑如何开凿宝藏屋之间的道路。已经开凿出的道路可以 任意通行不消耗代价。每开凿出一条新道路,小明就会与考古队一起挖掘出由该条道路 所能到达的宝藏屋的宝藏。另外,小明不想开发无用道路,即两个已经被挖掘过的宝藏 屋之间的道路无需再开发。

新开发一条道路的代价是:

L×K

L代表这条道路的长度,K代表从赞助商帮你打通的宝藏屋到这条道路起点的宝藏屋所经过的 宝藏屋的数量(包括赞助商帮你打通的宝藏屋和这条道路起点的宝藏屋) 。

请你编写程序为小明选定由赞助商打通的宝藏屋和之后开凿的道路,使得工程总代 价最小,并输出这个最小值。

输入输出格式

输入格式:

第一行两个用空格分离的正整数 n 和 m,代表宝藏屋的个数和道路数。

接下来 m 行,每行三个用空格分离的正整数,分别是由一条道路连接的两个宝藏 屋的编号(编号为 1~n),和这条道路的长度 v。

输出格式:

输出共一行,一个正整数,表示最小的总代价。

输入输出样例

输入样例#1:

4 5
1 2 1
1 3 3
1 4 1
2 3 4
3 4 1
输出样例#1:

4
输入样例#2:

4 5
1 2 1
1 3 3
1 4 1
2 3 4
3 4 2
输出样例#2:

5

说明

【样例解释1】

小明选定让赞助商打通了 1 号宝藏屋。小明开发了道路 1→2,挖掘了 2 号宝 藏。开发了道路 1→4,挖掘了 4 号宝藏。还开发了道路 4→3,挖掘了 3 号宝 藏。工程总代价为:1×1+1×1+1×2=4

【样例解释2】

小明选定让赞助商打通了 1 号宝藏屋。小明开发了道路 1→2,挖掘了 2 号宝 藏。开发了道路 1→3,挖掘了 3 号宝藏。还开发了道路 1→4,挖掘了 4 号宝 藏。工程总代价为:1×1+3×1+1×1=5

【数据规模与约定】

对于 20%的数据: 保证输入是一棵树,1≤n≤8,v≤5000 且所有的 v 都相等。

对于 40%的数据: 1≤n≤8,0≤m≤1000,v≤5000 且所有的 v 都相等。

对于 70%的数据: 1≤n≤8,0≤m≤1000,v≤5000

对于 100%的数据: 1≤n≤12,0≤m≤1000,v≤500000

题解:一看n<=12,明显是状压DP的数据范围。于是令f[i][S]表示当前与根连通的点的状态为S,并且最深的点的深度为i的最小代价。转移时,我们枚举所有不在S中的点,处理出每个点与S中的某个点连通所需要的最小代价。然后枚举这些点构成的所有集合S',用S'中所有点的代价+f[i][S]去更新f[i+1][S|S']即可。

时间复杂度?因为枚举补集和枚举子集是一个道理,所以就是优雅的$O(n 3^n)$啦(其实本人连枚举子集怎么回事都不太懂)!

#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
typedef long long ll;
int n,m,tot,ans; int map[110][110],dis[110][110],Log[4100];
int f[15][4100],g[4100],ref[4100],v[15],p[15];
inline int min(const int &a,const int &b)
{
return a<b?a:b;
} int main()
{
//freopen("treasure.in","r",stdin);
//freopen("treasure.out","w",stdout);
scanf("%d%d",&n,&m);
register int i,j,a,b,c,x;
for(i=0;i<n;i++) for(j=0;j<n;j++) map[i][j]=60000000;
for(i=1;i<=m;i++)
{
scanf("%d%d%d",&a,&b,&c),a--,b--;
map[a][b]=map[b][a]=min(map[a][b],c);
}
for(i=0;i<n;i++) Log[1<<i]=i;
memset(f,0x3f,sizeof(f));
for(i=0;i<n;i++) f[0][1<<i]=0;
for(i=0;i<n;i++) for(x=0;x<(1<<n);x++)
{
tot=0;
for(a=0;a<n;a++) if(!(x&(1<<a)))
{
v[tot]=60000000,p[tot]=1<<a;
for(j=x;j;j-=j&-j)
{
b=Log[j&-j];
v[tot]=min(v[tot],map[a][b]*(i+1));
}
tot++;
}
for(j=1;j<(1<<tot);j++)
{
g[j]=g[j-(j&-j)]+v[Log[j&-j]];
ref[j]=ref[j-(j&-j)]|p[Log[j&-j]];
f[i+1][x|ref[j]]=min(f[i+1][x|ref[j]],f[i][x]+g[j]);
}
}
ans=1<<30;
for(i=0;i<=n;i++) ans=min(ans,f[i][(1<<n)-1]);
printf("%d",ans);
return 0;
}

[NOIP2017]宝藏 状压DP的更多相关文章

  1. 洛谷$P3959\ [NOIp2017]$ 宝藏 状压$dp$

    正解:状压$dp$ 解题报告: 传送门$QwQ$ $8102$年的时候就想搞这题了,,,$9102$了$gql$终于开始做这题了$kk$ 发现有意义的状态只有当前选的点集和深度,所以设$f_{i,j} ...

  2. Luogu 3959 [NOIP2017] 宝藏- 状压dp

    题解 真的想不到这题状压的做法...听说还有跑的飞快的模拟退火,要是现场做绝对滚粗QAQ. 不考虑深度,先预处理出 $pt_{i, S}$ 表示让一个不属于 集合 $S$ 的 点$i$ 与点集 $S$ ...

  3. $[NOIp2017]$ 宝藏 状压$dp$

    \(Sol\) 觉得这里是个很巧妙的地方吖,就是记下当前扩展点集的最大深度,然后强制下一步扩展的点集都是最大深度+1.这样做在当前看可能会导致误算答案导致答案偏大,但是整个\(dp\)完成后一定可以得 ...

  4. Luogu3959 NOIP2017 宝藏 状压DP

    题目传送门:https://www.luogu.org/problemnew/show/P3959 题意:给出一个有$N$个点的图,求其中的一个生成树(指定一个点为根),使得$\sum\limits_ ...

  5. P3959 宝藏 状压dp

    之前写了一份此题关于模拟退火的方法,现在来补充一下状压dp的方法. 其实直接在dfs中状压比较好想,而且实现也很简单,但是网上有人说这种方法是错的...并不知道哪错了,但是就不写了,找了一个正解. 正 ...

  6. [Luogu P3959] 宝藏 (状压DP+枚举子集)

    题面 传送门:https://www.luogu.org/problemnew/show/P3959 Solution 这道题的是一道很巧妙的状压DP题. 首先,看到数据范围,应该状压DP没错了. 根 ...

  7. NOIp2017D2T2(luogu3959) 宝藏 (状压dp)

    时隔多年终于把这道题锅过了 数据范围显然用搜索剪枝状压dp. 可以记还有哪些点没到(或者已到了哪些点).我们最深已到的是哪些点.这些点的深度是多少,然后一层一层地往下推. 但其实是没必要记最深的那一层 ...

  8. 计蒜客 宝藏 (状压DP)

    链接 : Here! 思路 : 状压DP. 开始想直接爆搜, T掉了, 然后就采用了状压DP的方法来做. 定义$f[S]$为集合$S$的最小代价, $dis[i]$则记录第$i$个点的"深度 ...

  9. loj2318 「NOIP2017」宝藏[状压DP]

    附带其他做法参考:随机化(模拟退火.爬山等等等)配合搜索剪枝食用. 首先题意相当于在图上找一颗生成树并确定根,使得每个点与父亲的连边的权乘以各自深度的总和最小.即$\sum\limits_{i}dep ...

随机推荐

  1. ACdream 1084 寒假安排(阶乘素因子分解)

    题目链接:传送门   分析: 求A(n,m)转化成k进制以后末尾0的个数.对k素因子分解,第i个因子为fac[i], 第i个因子的指数为num[i],然后再对n的对A(n,m)进行素因子分解,设cou ...

  2. bazel-编译多目标

    demo2 使用bazel编译多目标示例,一个bianry,一个library. demo2目录树 ── demo2 ​ ├── app ​ │ ├── BUILD ​ │ ├── func.cpp ...

  3. 03、Windows Phone 套接字(Socket)实战之WP客户端设计

    因为 PC 端和 WP 端进行通信时,采用的自定义的协议,所以也需要定义 DataType 类来判断 通信数据的类型,并且把数据的描述信息(head) 和数据的实际内容(body)进行拼接和反转,所以 ...

  4. Python 元祖的操作

    注意:元祖定义后不可修改,单个元祖后面必须加逗号,否则认为是字符串:tuple = ('apple',) 1.定义元祖 tuple = ('apple','banana','grape','orang ...

  5. [C++]在什么时候需要“#include string.h“

    相关资料:https://zhidao.baidu.com/question/515578726.html C++中,string头文件基本上已经包含在iostream中了.但是,平时使用的时候建议加 ...

  6. Reveal Jquery 模式对话框插件

    /* * jQuery Reveal Plugin 1.0 * www.ZURB.com * Copyright 2010, ZURB * Free to use under the MIT lice ...

  7. Hadoop源码分析之读文件时NameNode和DataNode的处理过程

    转自: http://blog.csdn.net/workformywork/article/details/21783861 从NameNode节点获取数据块所在节点等信息 客户端在和数据节点建立流 ...

  8. 第二百五十八节,Tornado框架-逻辑处理get()方法和post()方法,初识模板语言

    Tornado框架-逻辑处理get()方法和post()方法,初识模板语言 Tornado框架,逻辑处理里的get()方法,和post()方法 get()方法,处理get方式的请求post()方法,处 ...

  9. MVC已经是现代Web开发中的一个很重要的部分,下面介绍一下Spring MVC的一些使用心得。

    MVC已经是现代Web开发中的一个很重要的部分,下面介绍一下Spring MVC的一些使用心得. 之前的项目比较简单,多是用JSP .Servlet + JDBC 直接搞定,在项目中尝试用 Strut ...

  10. Android 开发之环境搭建-0

    Android 开发环境安装与配置 一.开发工具介绍 要进行Android应用程序开发,最起码要有两个工具,一个是Android SDK,它不仅为开发人员提供了丰富的编程接口,而且提供了相关的调试工具 ...