canopy是聚类算法的一种实现

它是一种快速,简单,但是不太准确的聚类算法

canopy通过两个人为确定的阈值t1,t2来对数据进行计算,可以达到将一堆混乱的数据分类成有一定规则的n个数据堆

由于canopy算法本身的目的只是将混乱的数据划分成大概的几个类别,所以它是不太准确的

但是通过canopy计算出来的n个类别可以用在kmeans算法中的k值的确定(因为人为无法准确的确定k值到底要多少才合适,而有kmeans算法本身随机产生的话结果可能不是很精确。有关kmeans算法的解释请看点击打开链接

canopy算法流程如下:

(1)确定两个阈值t1,t2(确保t1一定大于t2)

(2)从数据集合中随机选出一个数据,计算这个数据到canopy的距离(如果当前没有canopy,则该点直接作为canopy)

(3)如果这个距离小于t1,则给这个数据标上弱标记,将t1加入这个canopy中(同时这个数据可以作为新的canopy来计算其他数据到这个点的距离)

(4)如果这个距离小于t2,则给这个数据标上强标记,并将其中数据集合中删除,此时认为这个数据点距离该canopy已经足够近了,不可能在形成新的canopy

(5)重复2-4的过程,直至数据集合中没有数据

这里的canopy指的是作为要划分数据的中心点,以这个canopy为中心,t2为半径,形成一个小圆。t1为半径,形成一个大圆。在小圆范围内的数据点被认为一定属于这个canopy,不能作为一个新的canopy来划分数据,而小圆范围外,大圆范围内的数据则又可以作为新的canopy来划分数据

划分完之后的数据类似下图

虚线的圈是t2,实线的圈是t1

可以看到canopy算法将可以将一堆杂乱的数据大致的划分为几块

所以canopy算法一般会和kmeans算法配合使用来到达使用者的目的

在使用canopy算法时,阈值t1,t2的确定是十分重要的

t1的值过大,会导致更多的数据会被重复迭代,形成过多的canopy;值过小则导致相反的效果

t2的值过大,会导致一个canopy中的数据太多,反之则过少

这样的情况都会导致运行的结果不准确

mahout之canopy算法简单理解的更多相关文章

  1. Mahout之Canopy Clustering深入理解

    转自:http://www.cnblogs.com/vivounicorn/archive/2011/09/23/2186483.html Mahout学习——Canopy Clustering 聚类 ...

  2. 寻找图的强连通分量:tarjan算法简单理解

    1.简介tarjan是一种使用深度优先遍历(DFS)来寻找有向图强连通分量的一种算法. 2.知识准备栈.有向图.强连通分量.DFS. 3.快速理解tarjan算法的运行机制提到DFS,能想到的是通过栈 ...

  3. mahout中kmeans算法和Canopy算法实现原理

    本文讲一下mahout中kmeans算法和Canopy算法实现原理. 一. Kmeans是一个很经典的聚类算法,我想大家都非常熟悉.虽然算法较为简单,在实际应用中却可以有不错的效果:其算法原理也决定了 ...

  4. Mahout 系列之--canopy 算法

    Canopy 算法,流程简单,容易实现,一下是算法 (1)设样本集合为S,确定两个阈值t1和t2,且t1>t2. (2)任取一个样本点p属于S,作为一个Canopy,记为C,从S中移除p. (3 ...

  5. SDUT OJ 数据结构实验之串一:KMP简单应用 && 浅谈对看毛片算法的理解

    数据结构实验之串一:KMP简单应用 Time Limit: 1000 ms Memory Limit: 65536 KiB Submit Statistic Discuss Problem Descr ...

  6. mahout 实现canopy

    环境: mahout-0.8 hadoop-1.1.2 ubuntu-12.04 理论这里就不说了,直接上实例: 下面举一个例子. 数据准备: canopy.dat文件,COPY到HDFS上,文件内容 ...

  7. Deep learning:四十九(RNN-RBM简单理解)

    前言: 本文主要是bengio的deep learning tutorial教程主页中最后一个sample:rnn-rbm in polyphonic music. 即用RNN-RBM来model复调 ...

  8. Deep learning:四十六(DropConnect简单理解)

    和maxout(maxout简单理解)一样,DropConnect也是在ICML2013上发表的,同样也是为了提高Deep Network的泛化能力的,两者都号称是对Dropout(Dropout简单 ...

  9. Canopy算法聚类

    Canopy一般用在Kmeans之前的粗聚类.考虑到Kmeans在使用上必须要确定K的大小,而往往数据集预先不能确定K的值大小的,这样如果 K取的不合理会带来K均值的误差很大(也就是说K均值对噪声的抗 ...

随机推荐

  1. UVA 1400."Ray, Pass me the dishes!" -分治+线段树区间合并(常规操作+维护端点)并输出最优的区间的左右端点-(洛谷 小白逛公园 升级版)

    "Ray, Pass me the dishes!" UVA - 1400 题意就是线段树区间子段最大和,线段树区间合并,但是这道题还要求输出最大和的子段的左右端点.要求字典序最小 ...

  2. 转:Heap spraying high addresses in 32-bit Chrome/Firefox on 64-bit Windows

    转:https://blog.skylined.nl/20160622001.html,June 22nd, 2016 In my previous blog post I wrote about m ...

  3. php 5.6 安装openssl extension 出现编译错误

    废话不多说,直接上问题: PHP和openssl extension都是最新版本的,标准步骤安装时候出现如下问题: php:php-5.6.27 openssl:openssl-1.1.0e ==== ...

  4. JavaScript with JSONPath

    <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>JavaScript JSO ...

  5. Number lengths FZU - 1050

    N! (N factorial) can be quite irritating and difficult to compute for large values of N. So instead ...

  6. JNI介绍

    JNI是在学习Android HAL时必须要面临一个知识点,如果你不了解它的机制,不了解它的使用方式,你会被本地代码绕的晕头转向,JNI作为一个中间语言的翻译官在运行Java代码的Android中有着 ...

  7. Unity快捷键总结

    Shift+Alt+A  物体快速激活 Ctrl+P 开始 Ctrl+Shift+P 暂停 Ctrl+B  编译并运行 Z  Pivot/Center切换 X Local/Global切换

  8. python函数 divmod

    divmod(a,b)函数 中文说明: divmod(a,b)方法返回的是a//b(除法取整)以及a对b的余数 返回结果类型为tuple 参数: a,b可以为数字(包括复数) from 2. Add ...

  9. 装饰者模式:轻松记住IO类的关系与API

    开门见山 目录 概述与模型 1.概述 含义:动态地将责任附加到对象上.若要拓展功能,装饰者提供了比继承更有弹性的替代方案. 初衷:需要动态为某一个类拓展.通常我们会使用继承,但是继承的话,会产生很多子 ...

  10. mui 页面滚动解决方案

    默认情况下mui 页面不能滚动,以下为解决方案: 1. mui('.mui-scroll-wrapper').scroll({  deceleration: 0.0005 //flick 减速系数,系 ...