mahout之canopy算法简单理解
canopy是聚类算法的一种实现
它是一种快速,简单,但是不太准确的聚类算法
canopy通过两个人为确定的阈值t1,t2来对数据进行计算,可以达到将一堆混乱的数据分类成有一定规则的n个数据堆
由于canopy算法本身的目的只是将混乱的数据划分成大概的几个类别,所以它是不太准确的
但是通过canopy计算出来的n个类别可以用在kmeans算法中的k值的确定(因为人为无法准确的确定k值到底要多少才合适,而有kmeans算法本身随机产生的话结果可能不是很精确。有关kmeans算法的解释请看点击打开链接)
canopy算法流程如下:
(1)确定两个阈值t1,t2(确保t1一定大于t2)
(2)从数据集合中随机选出一个数据,计算这个数据到canopy的距离(如果当前没有canopy,则该点直接作为canopy)
(3)如果这个距离小于t1,则给这个数据标上弱标记,将t1加入这个canopy中(同时这个数据可以作为新的canopy来计算其他数据到这个点的距离)
(4)如果这个距离小于t2,则给这个数据标上强标记,并将其中数据集合中删除,此时认为这个数据点距离该canopy已经足够近了,不可能在形成新的canopy
(5)重复2-4的过程,直至数据集合中没有数据
这里的canopy指的是作为要划分数据的中心点,以这个canopy为中心,t2为半径,形成一个小圆。t1为半径,形成一个大圆。在小圆范围内的数据点被认为一定属于这个canopy,不能作为一个新的canopy来划分数据,而小圆范围外,大圆范围内的数据则又可以作为新的canopy来划分数据
划分完之后的数据类似下图
虚线的圈是t2,实线的圈是t1
可以看到canopy算法将可以将一堆杂乱的数据大致的划分为几块
所以canopy算法一般会和kmeans算法配合使用来到达使用者的目的
在使用canopy算法时,阈值t1,t2的确定是十分重要的
t1的值过大,会导致更多的数据会被重复迭代,形成过多的canopy;值过小则导致相反的效果
t2的值过大,会导致一个canopy中的数据太多,反之则过少
这样的情况都会导致运行的结果不准确
mahout之canopy算法简单理解的更多相关文章
- Mahout之Canopy Clustering深入理解
转自:http://www.cnblogs.com/vivounicorn/archive/2011/09/23/2186483.html Mahout学习——Canopy Clustering 聚类 ...
- 寻找图的强连通分量:tarjan算法简单理解
1.简介tarjan是一种使用深度优先遍历(DFS)来寻找有向图强连通分量的一种算法. 2.知识准备栈.有向图.强连通分量.DFS. 3.快速理解tarjan算法的运行机制提到DFS,能想到的是通过栈 ...
- mahout中kmeans算法和Canopy算法实现原理
本文讲一下mahout中kmeans算法和Canopy算法实现原理. 一. Kmeans是一个很经典的聚类算法,我想大家都非常熟悉.虽然算法较为简单,在实际应用中却可以有不错的效果:其算法原理也决定了 ...
- Mahout 系列之--canopy 算法
Canopy 算法,流程简单,容易实现,一下是算法 (1)设样本集合为S,确定两个阈值t1和t2,且t1>t2. (2)任取一个样本点p属于S,作为一个Canopy,记为C,从S中移除p. (3 ...
- SDUT OJ 数据结构实验之串一:KMP简单应用 && 浅谈对看毛片算法的理解
数据结构实验之串一:KMP简单应用 Time Limit: 1000 ms Memory Limit: 65536 KiB Submit Statistic Discuss Problem Descr ...
- mahout 实现canopy
环境: mahout-0.8 hadoop-1.1.2 ubuntu-12.04 理论这里就不说了,直接上实例: 下面举一个例子. 数据准备: canopy.dat文件,COPY到HDFS上,文件内容 ...
- Deep learning:四十九(RNN-RBM简单理解)
前言: 本文主要是bengio的deep learning tutorial教程主页中最后一个sample:rnn-rbm in polyphonic music. 即用RNN-RBM来model复调 ...
- Deep learning:四十六(DropConnect简单理解)
和maxout(maxout简单理解)一样,DropConnect也是在ICML2013上发表的,同样也是为了提高Deep Network的泛化能力的,两者都号称是对Dropout(Dropout简单 ...
- Canopy算法聚类
Canopy一般用在Kmeans之前的粗聚类.考虑到Kmeans在使用上必须要确定K的大小,而往往数据集预先不能确定K的值大小的,这样如果 K取的不合理会带来K均值的误差很大(也就是说K均值对噪声的抗 ...
随机推荐
- UVA 1400."Ray, Pass me the dishes!" -分治+线段树区间合并(常规操作+维护端点)并输出最优的区间的左右端点-(洛谷 小白逛公园 升级版)
"Ray, Pass me the dishes!" UVA - 1400 题意就是线段树区间子段最大和,线段树区间合并,但是这道题还要求输出最大和的子段的左右端点.要求字典序最小 ...
- 转:Heap spraying high addresses in 32-bit Chrome/Firefox on 64-bit Windows
转:https://blog.skylined.nl/20160622001.html,June 22nd, 2016 In my previous blog post I wrote about m ...
- php 5.6 安装openssl extension 出现编译错误
废话不多说,直接上问题: PHP和openssl extension都是最新版本的,标准步骤安装时候出现如下问题: php:php-5.6.27 openssl:openssl-1.1.0e ==== ...
- JavaScript with JSONPath
<html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>JavaScript JSO ...
- Number lengths FZU - 1050
N! (N factorial) can be quite irritating and difficult to compute for large values of N. So instead ...
- JNI介绍
JNI是在学习Android HAL时必须要面临一个知识点,如果你不了解它的机制,不了解它的使用方式,你会被本地代码绕的晕头转向,JNI作为一个中间语言的翻译官在运行Java代码的Android中有着 ...
- Unity快捷键总结
Shift+Alt+A 物体快速激活 Ctrl+P 开始 Ctrl+Shift+P 暂停 Ctrl+B 编译并运行 Z Pivot/Center切换 X Local/Global切换
- python函数 divmod
divmod(a,b)函数 中文说明: divmod(a,b)方法返回的是a//b(除法取整)以及a对b的余数 返回结果类型为tuple 参数: a,b可以为数字(包括复数) from 2. Add ...
- 装饰者模式:轻松记住IO类的关系与API
开门见山 目录 概述与模型 1.概述 含义:动态地将责任附加到对象上.若要拓展功能,装饰者提供了比继承更有弹性的替代方案. 初衷:需要动态为某一个类拓展.通常我们会使用继承,但是继承的话,会产生很多子 ...
- mui 页面滚动解决方案
默认情况下mui 页面不能滚动,以下为解决方案: 1. mui('.mui-scroll-wrapper').scroll({ deceleration: 0.0005 //flick 减速系数,系 ...