http://www.lydsy.com/JudgeOnline/problem.php?id=3398

以下牡牛为a,牝牛为b。

学完排列计数后试着来写这题,“至少”一词可以给我们提示,我们可以枚举a为x头(x>1),然后算出对应的排列累计起来。

对于x头a,首先我们先缩掉必要的k头牛(x-1)*k,然后这时可以特判可以先结束(因为单调的),然后在缩好后的x个点和n-x-(x-1)*k个点进行多重排列就行了。

只是遇到一个问题,多重排列有个除法,又要取模的QAQ,即(a/b)%m,怎么做呢。。我只能去抱大腿。dwellings神犇说这是乘法逆元,这样转换(a*b^(phi(m)-1)) % m

其实补补mod意义下的除法吧

我们知道除以ab=1时,b就是a的逆元,同理,a也是b的逆元。

在实际意义下的数的逆元就是它的倒数,而mod意义下的逆元没有倒数的说法,在这里我们要补一些概念:

剩余系:就是mod n的所有元素,即0~n-1

而mod意义下的加减乘都是在剩余系中完成的,例如(a+b)%c=(a%c+b%c)%c,这里的a%c和b%c就是转换到了剩余系中然后做加法,显然这是成立的。

但是除法不同,而在剩余系中的逆元是可能出现在剩余系中的(如果不是,那么要用另一种做法,就是将这个mod拆开,这里先不阐述。。因为我不会嘛。。)

那么我们同样用ab=1来求逆元,那么显然我们可以用乘法来做。

例如mod15下的7*13=1,那么13就是7的逆元,7也是13的逆元。

哈哈,那么显然了,当在剩余系n中,元素a有ax=1(mod n),且gcd(a, n)=1(即有解),那么中x就是a的逆元。

还有一个欧拉定理(费马小定理

a^(phi(n))=1(mod n),且a和n互质

那么逆就是a^(phi(n)-1) mod n

看来得去补补数论了QAQ

#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std;
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%lld", a)
#define dbg(x) cout << (#x) << " = " << (x) << endl
#define printarr2(a, b, c) for1(_, 1, b) { for1(__, 1, c) cout << a[_][__]; cout << endl; }
#define printarr1(a, b) for1(_, 1, b) cout << a[_] << '\t'; cout << endl
inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; }
inline const int max(const int &a, const int &b) { return a>b?a:b; }
inline const int min(const int &a, const int &b) { return a<b?a:b; } const int N=100005;
const long long MOD=5000011;
int p[N], n, k;
long long fastpow(long long a, long long b) {
long long ret=1; a%=MOD;
while(b) {
if(b&1) ret=(ret*a)%MOD;
a=(a*a)%MOD;
b>>=1;
}
return ret;
}
int main() {
read(n); read(k); p[0]=p[1]=1;
for1(i, 2, n) p[i]=((long long)p[i-1]*(long long)i)%MOD;
long long ans=1+n;
for1(i, 2, n) {
int b=n-i, x=i, y=b-(x-1)*k;
if(y<0) break;
//(a / b) % p = a * b ^ (phi(p)-1) % p
ans=(ans+((long long)p[x+y]*fastpow((long long)p[x]*(long long)p[y], MOD-2))%MOD)%MOD;
}
print(ans);
return 0;
}

Description

    约翰要带N(1≤N≤100000)只牛去参加集会里的展示活动,这些牛可以是牡牛,也可以是牝牛.牛们要站成一排.但是牡牛是好斗的,为了避免牡牛闹出乱子,约翰决定任意两只牡牛之间至少要有K(O≤K<N)只牝牛.
    请计算一共有多少种排队的方法.所有牡牛可以看成是相同的,所有牝牛也一样.

Input

    一行,输入两个整数N和K.

Output

 
    一个整数,表示排队的方法数.

Sample Input

4 2

Sample Output

6
样例说明
6种方法分别是:牝牝牝牝,牡牝牝牝,牝牡牝牝,牝牝牡牝,牝牝牝牡,牡牝牝牡

HINT

Source

【BZOJ】3398: [Usaco2009 Feb]Bullcow 牡牛和牝牛(排列组合+乘法逆元+欧拉定理/费马小定理)的更多相关文章

  1. BZOJ 3398: [Usaco2009 Feb]Bullcow 牡牛和牝牛( dp )

    水题...忘了取模就没1A了.... --------------------------------------------------------------------------- #incl ...

  2. bzoj 3398 [Usaco2009 Feb]Bullcow 牡牛和牝牛——前缀和优化dp / 排列组合

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3398 好简单呀.而且是自己想出来的. dp[ i ]表示最后一个牡牛在 i 的方案数. 当前 ...

  3. BZOJ 3398 [Usaco2009 Feb]Bullcow 牡牛和牝牛:dp【前缀和优化】

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3398 题意: 约翰要带N(1≤N≤100000)只牛去参加集会里的展示活动,这些牛可以是牡 ...

  4. bzoj:3398 [Usaco2009 Feb]Bullcow 牡牛和牝牛

    Description     约翰要带N(1≤N≤100000)只牛去参加集会里的展示活动,这些牛可以是牡牛,也可以是牝牛.牛们要站成一排.但是牡牛是好斗的,为了避免牡牛闹出乱子,约翰决定任意两只牡 ...

  5. bzoj 3398: [Usaco2009 Feb]Bullcow 牡牛和牝牛【dp】

    设f[i]为i为牡牛的方案数,f[0]=1,s为f的前缀和,f[i]=s[max(i-k-1,0)] #include<iostream> #include<cstdio> u ...

  6. BZOJ 3398: [Usaco2009 Feb]Bullcow 牡牛和牝牛 水题~

    水~ #include <cstdio> #define N 100004 #define mod 5000011 #define setIO(s) freopen(s".in& ...

  7. 3398: [Usaco2009 Feb]Bullcow 牡牛和牝牛

    3398: [Usaco2009 Feb]Bullcow 牡牛和牝牛 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 243  Solved: 167[S ...

  8. BZOJ3398: [Usaco2009 Feb]Bullcow 牡牛和牝牛

    3398: [Usaco2009 Feb]Bullcow 牡牛和牝牛 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 30  Solved: 17[Sub ...

  9. BZOJ_3398_[Usaco2009 Feb]Bullcow 牡牛和牝牛_组合数学

    BZOJ_3398_[Usaco2009 Feb]Bullcow 牡牛和牝牛_组合数学 Description     约翰要带N(1≤N≤100000)只牛去参加集会里的展示活动,这些牛可以是牡牛, ...

随机推荐

  1. 算法笔记_135:格子取数问题(Java)

    目录 1 问题描述 2 解决方案   1 问题描述 有n*n个格子,每个格子里有正数或者0,从最左上角往最右下角走,只能向下和向右走,一共走两次(即从左上角往右下角走两趟),把所有经过的格子里的数加起 ...

  2. 算法笔记_016:凸包问题(Java)

    目录 1 问题描述 2 解决方案 2.1 蛮力法 1 问题描述 给定一个平面上n个点的集合,它的凸包就是包含所有这些点的最小凸多边形,求取满足此条件的所有点. 另外,形象生动的描述: (1)我们可以把 ...

  3. FileUpload类中FileUpload1.FileName和FileUpload1.PostedFile.FileName的区别

    FileUpload1.FileName 用来获取客户端上使用 FileUpload 控件上载的文件的名称.此属性返回的文件名不包含此文件在客户端上的路径.FileUpload1.PostedFile ...

  4. 如何下载HLS视频到本地(m3u8)

      如何下载HLS视频到本地(m3u8)? CreateTime--2018年3月21日16:07:00 Author:Marydon 一.需求 很多连载的动漫需要VIP会员才能观看,而且有的由于版权 ...

  5. Node.js 使用JWT进行用户认证

    代码地址如下:http://www.demodashi.com/demo/13847.html 运行环境 该项目基于 node(v7.8.0版本以上) 和 mongodb 数据库,因此电脑上需要安装这 ...

  6. Linux-软件包管理-rpm命令管理-安装-卸载

    mount 确认光盘是否挂载 mount /dev/cdrom /mnt/cdrom 将设备名称/dev/cdrom安装到/mnt/cdrom挂载点下面 mount 查看光盘是否已经挂载 (ro表示只 ...

  7. 关于对象映射(Dto->model) 思路的一些想法

    最近粗浅的学习了下AutoMapper 这个做对象映射的第三方工具,觉得非常方便使用,所以简单的总结了一下我能想到的简单的对象映射的方式. 占时先不考虑源对象成员到目标对象成员的指定映射(即成员名不一 ...

  8. OC06 -- 字典

    一. 创建不可变字典的方式: //字典的字面量,前key后value NSDictionary *dic =@{@"1":@"2",@"3" ...

  9. Atitit.软件仪表盘(0)--软件的子系统体系说明

    Atitit.软件仪表盘(0)--软件的子系统体系说明 1. 温度检测报警子系统 2. Os子系统 3. Vm子系统 4. Platform,业务系统子系统 5. Db数据库子系统 6. 通讯子系统 ...

  10. Atitit.多媒体区----web视频格式的选择总结

    Atitit.多媒体区----web视频格式的选择总结 1. 因为现阶段不同的浏览器支持的视频格式是不同的 1 2. 各浏览器Html5 Video支持的影音格式: 2 3. 解决方案是什么?Flas ...