【BZOJ】3398: [Usaco2009 Feb]Bullcow 牡牛和牝牛(排列组合+乘法逆元+欧拉定理/费马小定理)
http://www.lydsy.com/JudgeOnline/problem.php?id=3398
以下牡牛为a,牝牛为b。
学完排列计数后试着来写这题,“至少”一词可以给我们提示,我们可以枚举a为x头(x>1),然后算出对应的排列累计起来。
对于x头a,首先我们先缩掉必要的k头牛(x-1)*k,然后这时可以特判可以先结束(因为单调的),然后在缩好后的x个点和n-x-(x-1)*k个点进行多重排列就行了。
只是遇到一个问题,多重排列有个除法,又要取模的QAQ,即(a/b)%m,怎么做呢。。我只能去抱大腿。dwellings神犇说这是乘法逆元,这样转换(a*b^(phi(m)-1)) % m
其实补补mod意义下的除法吧
我们知道除以ab=1时,b就是a的逆元,同理,a也是b的逆元。
在实际意义下的数的逆元就是它的倒数,而mod意义下的逆元没有倒数的说法,在这里我们要补一些概念:
剩余系:就是mod n的所有元素,即0~n-1
而mod意义下的加减乘都是在剩余系中完成的,例如(a+b)%c=(a%c+b%c)%c,这里的a%c和b%c就是转换到了剩余系中然后做加法,显然这是成立的。
但是除法不同,而在剩余系中的逆元是可能出现在剩余系中的(如果不是,那么要用另一种做法,就是将这个mod拆开,这里先不阐述。。因为我不会嘛。。)
那么我们同样用ab=1来求逆元,那么显然我们可以用乘法来做。
例如mod15下的7*13=1,那么13就是7的逆元,7也是13的逆元。
哈哈,那么显然了,当在剩余系n中,元素a有ax=1(mod n),且gcd(a, n)=1(即有解),那么中x就是a的逆元。
还有一个欧拉定理(费马小定理
a^(phi(n))=1(mod n),且a和n互质
那么逆就是a^(phi(n)-1) mod n
看来得去补补数论了QAQ
#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std;
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%lld", a)
#define dbg(x) cout << (#x) << " = " << (x) << endl
#define printarr2(a, b, c) for1(_, 1, b) { for1(__, 1, c) cout << a[_][__]; cout << endl; }
#define printarr1(a, b) for1(_, 1, b) cout << a[_] << '\t'; cout << endl
inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; }
inline const int max(const int &a, const int &b) { return a>b?a:b; }
inline const int min(const int &a, const int &b) { return a<b?a:b; } const int N=100005;
const long long MOD=5000011;
int p[N], n, k;
long long fastpow(long long a, long long b) {
long long ret=1; a%=MOD;
while(b) {
if(b&1) ret=(ret*a)%MOD;
a=(a*a)%MOD;
b>>=1;
}
return ret;
}
int main() {
read(n); read(k); p[0]=p[1]=1;
for1(i, 2, n) p[i]=((long long)p[i-1]*(long long)i)%MOD;
long long ans=1+n;
for1(i, 2, n) {
int b=n-i, x=i, y=b-(x-1)*k;
if(y<0) break;
//(a / b) % p = a * b ^ (phi(p)-1) % p
ans=(ans+((long long)p[x+y]*fastpow((long long)p[x]*(long long)p[y], MOD-2))%MOD)%MOD;
}
print(ans);
return 0;
}
Description
Input
Output
Sample Input
Sample Output
样例说明
6种方法分别是:牝牝牝牝,牡牝牝牝,牝牡牝牝,牝牝牡牝,牝牝牝牡,牡牝牝牡
HINT
Source
【BZOJ】3398: [Usaco2009 Feb]Bullcow 牡牛和牝牛(排列组合+乘法逆元+欧拉定理/费马小定理)的更多相关文章
- BZOJ 3398: [Usaco2009 Feb]Bullcow 牡牛和牝牛( dp )
水题...忘了取模就没1A了.... --------------------------------------------------------------------------- #incl ...
- bzoj 3398 [Usaco2009 Feb]Bullcow 牡牛和牝牛——前缀和优化dp / 排列组合
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3398 好简单呀.而且是自己想出来的. dp[ i ]表示最后一个牡牛在 i 的方案数. 当前 ...
- BZOJ 3398 [Usaco2009 Feb]Bullcow 牡牛和牝牛:dp【前缀和优化】
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3398 题意: 约翰要带N(1≤N≤100000)只牛去参加集会里的展示活动,这些牛可以是牡 ...
- bzoj:3398 [Usaco2009 Feb]Bullcow 牡牛和牝牛
Description 约翰要带N(1≤N≤100000)只牛去参加集会里的展示活动,这些牛可以是牡牛,也可以是牝牛.牛们要站成一排.但是牡牛是好斗的,为了避免牡牛闹出乱子,约翰决定任意两只牡 ...
- bzoj 3398: [Usaco2009 Feb]Bullcow 牡牛和牝牛【dp】
设f[i]为i为牡牛的方案数,f[0]=1,s为f的前缀和,f[i]=s[max(i-k-1,0)] #include<iostream> #include<cstdio> u ...
- BZOJ 3398: [Usaco2009 Feb]Bullcow 牡牛和牝牛 水题~
水~ #include <cstdio> #define N 100004 #define mod 5000011 #define setIO(s) freopen(s".in& ...
- 3398: [Usaco2009 Feb]Bullcow 牡牛和牝牛
3398: [Usaco2009 Feb]Bullcow 牡牛和牝牛 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 243 Solved: 167[S ...
- BZOJ3398: [Usaco2009 Feb]Bullcow 牡牛和牝牛
3398: [Usaco2009 Feb]Bullcow 牡牛和牝牛 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 30 Solved: 17[Sub ...
- BZOJ_3398_[Usaco2009 Feb]Bullcow 牡牛和牝牛_组合数学
BZOJ_3398_[Usaco2009 Feb]Bullcow 牡牛和牝牛_组合数学 Description 约翰要带N(1≤N≤100000)只牛去参加集会里的展示活动,这些牛可以是牡牛, ...
随机推荐
- tarjan+缩点+强连通定理
C - Network of Schools Time Limit:1000MS Memory Limit:10000KB 64bit IO Format:%I64d & %I ...
- Arrays.asList的用法
使用工具类Arrays.asList()把数组转换成集合时,不能使用其修改集合相关的方法,它的add/remove/clear方法会抛出UnsupportOperationException异常说明: ...
- 指定安装应用程序移至SD卡(App2SD)
在2.2发布之后,除了增加Flash Player的支持外,最令人瞩目的莫过于App to Sdcard的支持了.至此之前,android应用程序仅能安装于手机内存,而在“有限”的资源下,至多能安装5 ...
- Android用http协议上传文件
http协议上传文件一般最大是2M,比较适合上传小于两M的文件 [代码] [Java]代码 001import java.io.File; 002import java.io.FileInp ...
- 【C语言】二维数组中的查找,杨氏矩阵
//二维数组中的查找,杨氏矩阵 //在一个二维数组中,每行都依照从左到右的递增的顺序排序.每列都依照从上到下递增的顺序排序. //请完毕一个函数.输入这种一个数组和一个数,推断数组中是否包括这个数. ...
- Rigidbody-ClosestPointOnBounds测试
可见是Collider的Bounds
- MySql图解给表添加外键
关于外键约束的几种方式,请移步鄙人的另外一个博客中的博文 http://blog.csdn.net/hadues/article/details/52558184
- Struts2初学 Struts2在Action获取内置对象request,session,application(即ServletContext)
truts2在Action中如何访问request,session,application(即ServletContext)对象???? 方式一:与Servlet API解耦的方式 可以使用 ...
- 【转载】SAP_ECC6.0_EHP4或SAP_ECC6.0_EHP5_基于Windows_Server_2008R2_和SQL_server_2008下的安装
其实这是之前Michael_z 5篇文章的集合,但作者做了一些补充 参考重要安装文档:http://www.cnblogs.com/Michael_z/category/322108.html(本博客 ...
- C#大小写字母转换函数
ToUpper:小写转大写ToLower:大写转小写 例如: string A="aasiDi778=AA"; string B=""; B=A.ToUpper ...