https://cn.vjudge.net/contest/260665#problem/E

题意:

给你一个n个点m条边的无向无环图,在尽量少的节点上放灯,使得所有边都被照亮。每盏灯将照亮以它为一个端点的所有边。

在灯的总数最小的前提下,被两盏灯同时被照亮的边数应该尽量大。

solution:

这是LRJ《训练指南》上的例题。

这题教会了我一个很有用的技巧:有两个所求的值要优化,比如让a尽量小,b也尽量小

那么可以转化为让 M*a+b尽量小,其中M应该是一个比“a的最大值和b的最小值之差”还要大的数

最终的答案为ans/M, ans%M

回到这题,要求放的灯总数最小,被两盏灯同时照亮的边数尽量大。

因为每条边要么被一盏灯照亮,要么被两盏灯照亮,所以可以转换为:

求:放的灯总数量最少,被一盏灯照亮的边数尽量少。

就可以变成球 M*a+b 的最小值,a为放置的灯数量,b为被一盏灯照的边数

f[u][1]表示u点放灯时的整个子树最小值
f[u][0]表示u点不放灯时的整个子树最小值

如果u放,那么u个子结点可以选择放,也可以不放,选择其中较小的值。如果选的是不照,就要增加一条只有一个灯照的边
如果u不放,那么其子结点就必须选择要放,而且每条边都只有一个灯照

 /*************************************************************************
> File Name: a.cpp
> Author: QWX
> Mail:
> Created Time: 2018/10/16 11:38:09
************************************************************************/ //{{{ #include
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<vector>
#include<cmath>
#include<queue>
#include<map>
#include<set>
#include<string>
#include<cstring>
#include<complex>
//#include<bits/stdc++.h>
#define vi vector<int>
#define pii pair<int,int>
#define mp make_pair
#define pb push_back
#define first fi
#define second se
#define pw(x) (1ll << (x))
#define sz(x) ((int)(x).size())
#define all(x) (x).begin(),(x).end()
#define rep(i,l,r) for(int i=(l);i<(r);i++)
#define per(i,r,l) for(int i=(r);i>=(l);i--)
#define FOR(i,l,r) for(int i=(l);i<=(r);i++)
#define cl(a,b) memset(a,b,sizeof(a))
#define fastio ios::sync_with_stdio(false);cin.tie(0);
#define lson l , mid , ls
#define rson mid + 1 , r , rs
#define INF 0x3f3f3f3f
#define LINF 0x3f3f3f3f3f3f3f3f
#define ll long long
#define ull unsigned long long
#define dd(x) cout << #x << " = " << (x) << ","
#define de(x) cout << #x << " = " << (x) << "\n"
#define endl "\n"
using namespace std;
//}}} const int N=;
const int Z=; int n,m;
int dp[N][];
vi G[N];
bool vis[N]; void dfs(int u)
{
vis[u]=;
dp[u][]=;
dp[u][]=Z;
for(auto v:G[u])if(!vis[v]){
dfs(v);
dp[u][]+=dp[v][]+;
dp[u][]+=min(dp[v][],dp[v][]+);
}
} int main()
{
fastio;
int T;cin>>T;
while(T--){
rep(i,,n)G[i].clear();
cin>>n>>m;
rep(i,,m){
int a,b; cin>>a>>b;
G[a].pb(b);
G[b].pb(a);
}
cl(vis,);
int ans=;
rep(i,,n)if(!vis[i]){
dfs(i);
ans+=min(dp[i][],dp[i][]);
}
cout<<ans/Z<<" "<<m-ans%Z<<" "<<ans%Z<<endl;
}
return ;
}

树形dp(灯与街道)的更多相关文章

  1. BZOJ 1509: [NOI2003]逃学的小孩( 树形dp )

    树形dp求出某个点的最长3条链a,b,c(a>=b>=c), 然后以这个点为交点的最优解一定是a+2b+c.好像还有一种做法是求出树的直径然后乱搞... ----------------- ...

  2. 再谈树形dp

    上次说了说树形dp的入门 那么这次该来一点有难度的题目了: UVA10859 Placing Lampposts 给定一个n个点m条边的无向无环图,在尽量少的节点上放灯,使得所有边都与灯相邻(被灯照亮 ...

  3. POJ 1849 - Two - [DFS][树形DP]

    Time Limit: 1000MS Memory Limit: 30000K Description The city consists of intersections and streets t ...

  4. BZOJ4446:[SCOI2015]小凸玩密室(树形DP)

    Description 小凸和小方相约玩密室逃脱,这个密室是一棵有n个节点的完全二叉树,每个节点有一个灯泡.点亮所有灯泡即可逃出密室. 每个灯泡有个权值Ai,每条边也有个权值bi.点亮第1个灯泡不需要 ...

  5. UVA 10859 Placing Lamppost 树形DP+二目标最优解的求解方案

    题意:给定一个无向,无环,无多重边,要求找出最少的若干点,使得,每条边之中至少有一个点上有街灯.在满足上述条件的时候将还需要满足让两个点被选择的边的数量尽量多. 题解: 对于如何求解最小的节点数目这点 ...

  6. 初涉树形dp

    算是一个……复习以及进阶? 什么是树形dp 树形dp是一种奇妙的dp…… 它的一个重要拓展是和各种树形的数据结构结合,比如说在trie上.自动机上的dp. 而且有些时候还可以拓展到环加外向树.仙人掌上 ...

  7. BZOJ4446 [Scoi2015]小凸玩密室 【树形Dp】

    题目 小凸和小方相约玩密室逃脱,这个密室是一棵有n个节点的完全二叉树,每个节点有一个灯泡.点亮所有灯 泡即可逃出密室.每个灯泡有个权值Ai,每条边也有个权值bi.点亮第1个灯泡不需要花费,之后每点亮4 ...

  8. BZOJ 1509[NOI 2003]逃学的小孩 树形dp

    1509: [NOI2003]逃学的小孩 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 995  Solved: 505[Submit][Status][ ...

  9. UVA 10859 树形DP

    很明显的树形DP了,设状态dp[i][0],dp[i][1].枚举子节点放或不放的两种状态. 在此学到一种不同于一般处理的方法,题目要求被两灯照亮的边尽量多,反过来即被一灯照亮的尽量少设为e.又需要的 ...

  10. 树形DP入门学习

    这里是学习韦神的6道入门树形dp进行入门,本来应放在day12&&13里,但感觉这个应该单独放出来好点. 这里大部分题目都是参考的韦神的思想. A - Anniversary part ...

随机推荐

  1. LeetCode 腾讯精选50题-- 买卖股票的最佳时机 II

    贪心算法: 具体的解题思路如下: II 的解题思路可以分为两部分, 1. 找到数组中差值较大的两个元素,计算差值. 2. 再步骤一最大的元素的之后,继续遍历,寻找差值最大的两个元素 可以得出的是,遍历 ...

  2. 利用python3 爬取 网易云 上 周杰伦所有专辑,歌曲,评论,并完成可视化分析已经歌曲情绪化分析

    这篇文章适合于python爱好者,里面可能很多语句是冗长的,甚至可能有一些尚未发现的BUG,这个伴随着我们继续学习来慢慢消解吧.接下来 我把里面会用到的东西在这里做一个简单总结吧:本文用到了两门解释性 ...

  3. Linux基础篇之FTP服务器搭建(二)

    上一篇文章说到了搭建FTP匿名用户的访问,接下来讲解一下本地用户的登录. 一.首先先建立一个用户,这里举例:xiaoming,并为其设置密码.  二.修改配置文件. 文件:ftpusers 文件:us ...

  4. touchgfx -- Integration

    将UI连接到系统 在大多数应用程序中,UI需要以某种方式连接到系统的其余部分,并发送和接收数据.这可以与硬件外围设备(传感器数据,A / D转换,串行通信等)接口,也可以与其他软件模块接口. 本文介绍 ...

  5. Selenium&Appium四种等待方式

    一.摘要 本博文主要介绍自动化测试中,无论是selenium或是Appium的四种等待方式,合理的使用等待对代码的稳定性,测试效率都有很大的提高 隐式等待:是在尝试发现某个元素的时候,如果没能立刻发现 ...

  6. R的数据结构--数组

    数组:可以认为数组是矩阵的扩展,它将矩阵扩展到2维以上.如果给定的数组是1维的则相当于向量,2维的相当于矩阵. R语言中的数组元素的类型也是单一的,可以是数值型,逻辑型,字符型或复数型 参数解释 ar ...

  7. [].slice.call(arguments,1) 个人理解

    var arr = []; [] == arr; 假设 var arr = [1,2,3,4,5]; 那么 arr.slice(1,2) == [2]; 通过 slice.call 才能使用call显 ...

  8. 《Redis 设计与实现》读书笔记(四)

    独立功能的实现 十八.发布和订阅 发布和订阅由下面几条命令组成 PUBLISH,发布消息,例如PUBLISH SUBSCRIBE,订阅某个频道 SUBSCRIBE UNSUBSCRIBE 退订某个频道 ...

  9. 调用WebService接口返回字符串

    Service service = new Service(); Call call = (Call) service.createCall(); call.setTargetEndpointAddr ...

  10. BZOJ1101——莫比乌斯函数&&入门

    题目 链接 有$50000$次查询,对于给定的整数$a,b$和$d$,有多少正整数对$x$和$y$,满足$x \leq a$,$y \leq b$,并且$gcd(x, y)=d$.$1 \leq k ...