https://cn.vjudge.net/contest/260665#problem/E

题意:

给你一个n个点m条边的无向无环图,在尽量少的节点上放灯,使得所有边都被照亮。每盏灯将照亮以它为一个端点的所有边。

在灯的总数最小的前提下,被两盏灯同时被照亮的边数应该尽量大。

solution:

这是LRJ《训练指南》上的例题。

这题教会了我一个很有用的技巧:有两个所求的值要优化,比如让a尽量小,b也尽量小

那么可以转化为让 M*a+b尽量小,其中M应该是一个比“a的最大值和b的最小值之差”还要大的数

最终的答案为ans/M, ans%M

回到这题,要求放的灯总数最小,被两盏灯同时照亮的边数尽量大。

因为每条边要么被一盏灯照亮,要么被两盏灯照亮,所以可以转换为:

求:放的灯总数量最少,被一盏灯照亮的边数尽量少。

就可以变成球 M*a+b 的最小值,a为放置的灯数量,b为被一盏灯照的边数

f[u][1]表示u点放灯时的整个子树最小值
f[u][0]表示u点不放灯时的整个子树最小值

如果u放,那么u个子结点可以选择放,也可以不放,选择其中较小的值。如果选的是不照,就要增加一条只有一个灯照的边
如果u不放,那么其子结点就必须选择要放,而且每条边都只有一个灯照

 /*************************************************************************
> File Name: a.cpp
> Author: QWX
> Mail:
> Created Time: 2018/10/16 11:38:09
************************************************************************/ //{{{ #include
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<vector>
#include<cmath>
#include<queue>
#include<map>
#include<set>
#include<string>
#include<cstring>
#include<complex>
//#include<bits/stdc++.h>
#define vi vector<int>
#define pii pair<int,int>
#define mp make_pair
#define pb push_back
#define first fi
#define second se
#define pw(x) (1ll << (x))
#define sz(x) ((int)(x).size())
#define all(x) (x).begin(),(x).end()
#define rep(i,l,r) for(int i=(l);i<(r);i++)
#define per(i,r,l) for(int i=(r);i>=(l);i--)
#define FOR(i,l,r) for(int i=(l);i<=(r);i++)
#define cl(a,b) memset(a,b,sizeof(a))
#define fastio ios::sync_with_stdio(false);cin.tie(0);
#define lson l , mid , ls
#define rson mid + 1 , r , rs
#define INF 0x3f3f3f3f
#define LINF 0x3f3f3f3f3f3f3f3f
#define ll long long
#define ull unsigned long long
#define dd(x) cout << #x << " = " << (x) << ","
#define de(x) cout << #x << " = " << (x) << "\n"
#define endl "\n"
using namespace std;
//}}} const int N=;
const int Z=; int n,m;
int dp[N][];
vi G[N];
bool vis[N]; void dfs(int u)
{
vis[u]=;
dp[u][]=;
dp[u][]=Z;
for(auto v:G[u])if(!vis[v]){
dfs(v);
dp[u][]+=dp[v][]+;
dp[u][]+=min(dp[v][],dp[v][]+);
}
} int main()
{
fastio;
int T;cin>>T;
while(T--){
rep(i,,n)G[i].clear();
cin>>n>>m;
rep(i,,m){
int a,b; cin>>a>>b;
G[a].pb(b);
G[b].pb(a);
}
cl(vis,);
int ans=;
rep(i,,n)if(!vis[i]){
dfs(i);
ans+=min(dp[i][],dp[i][]);
}
cout<<ans/Z<<" "<<m-ans%Z<<" "<<ans%Z<<endl;
}
return ;
}

树形dp(灯与街道)的更多相关文章

  1. BZOJ 1509: [NOI2003]逃学的小孩( 树形dp )

    树形dp求出某个点的最长3条链a,b,c(a>=b>=c), 然后以这个点为交点的最优解一定是a+2b+c.好像还有一种做法是求出树的直径然后乱搞... ----------------- ...

  2. 再谈树形dp

    上次说了说树形dp的入门 那么这次该来一点有难度的题目了: UVA10859 Placing Lampposts 给定一个n个点m条边的无向无环图,在尽量少的节点上放灯,使得所有边都与灯相邻(被灯照亮 ...

  3. POJ 1849 - Two - [DFS][树形DP]

    Time Limit: 1000MS Memory Limit: 30000K Description The city consists of intersections and streets t ...

  4. BZOJ4446:[SCOI2015]小凸玩密室(树形DP)

    Description 小凸和小方相约玩密室逃脱,这个密室是一棵有n个节点的完全二叉树,每个节点有一个灯泡.点亮所有灯泡即可逃出密室. 每个灯泡有个权值Ai,每条边也有个权值bi.点亮第1个灯泡不需要 ...

  5. UVA 10859 Placing Lamppost 树形DP+二目标最优解的求解方案

    题意:给定一个无向,无环,无多重边,要求找出最少的若干点,使得,每条边之中至少有一个点上有街灯.在满足上述条件的时候将还需要满足让两个点被选择的边的数量尽量多. 题解: 对于如何求解最小的节点数目这点 ...

  6. 初涉树形dp

    算是一个……复习以及进阶? 什么是树形dp 树形dp是一种奇妙的dp…… 它的一个重要拓展是和各种树形的数据结构结合,比如说在trie上.自动机上的dp. 而且有些时候还可以拓展到环加外向树.仙人掌上 ...

  7. BZOJ4446 [Scoi2015]小凸玩密室 【树形Dp】

    题目 小凸和小方相约玩密室逃脱,这个密室是一棵有n个节点的完全二叉树,每个节点有一个灯泡.点亮所有灯 泡即可逃出密室.每个灯泡有个权值Ai,每条边也有个权值bi.点亮第1个灯泡不需要花费,之后每点亮4 ...

  8. BZOJ 1509[NOI 2003]逃学的小孩 树形dp

    1509: [NOI2003]逃学的小孩 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 995  Solved: 505[Submit][Status][ ...

  9. UVA 10859 树形DP

    很明显的树形DP了,设状态dp[i][0],dp[i][1].枚举子节点放或不放的两种状态. 在此学到一种不同于一般处理的方法,题目要求被两灯照亮的边尽量多,反过来即被一灯照亮的尽量少设为e.又需要的 ...

  10. 树形DP入门学习

    这里是学习韦神的6道入门树形dp进行入门,本来应放在day12&&13里,但感觉这个应该单独放出来好点. 这里大部分题目都是参考的韦神的思想. A - Anniversary part ...

随机推荐

  1. linux环境下安装python3的方法(转)

    Linux 安装python3.7.0   我这里使用的时centos7-mini,centos系统本身默认安装有python2.x,版本x根据不同版本系统有所不同,可通过 python --V 或 ...

  2. 如何用Java代码在SAP Marketing Cloud里创建contact数据

    我们可以使用SAP Marketing Cloud提供的Contact create OData API在第三方应用里创建Contact主数据. API地址:/sap/opu/odata/sap/CU ...

  3. java——springmvc——注册中央调度器

    在WEB-INF下的web.xml中配置 <?xml version="1.0" encoding="UTF-8"?> <web-app xm ...

  4. new Function()语法

    函数的语法: let func = new Function(...args, body); 历史原因,参数也可以以逗号分隔的列表的形式给出,这三个意思相同: new Function('a', 'b ...

  5. CentOS7 - Package does not match intended download 问题解决

    yum 安装软件,有时会出现 Error: Package does not match intended download,这时需要彻底清除已有的下载,然后重新安装即可. $ sudo yum cl ...

  6. HDU - 3506 Monkey Party

    HDU - 3506 思路: 平行四边形不等式优化dp 这不就是石子归并(雾 代码: #pragma GCC optimize(2) #pragma GCC optimize(3) #pragma G ...

  7. 用tensorflow实现SVM

    环境配置 win10 Python 3.6 tensorflow1.15 scipy matplotlib (运行时可能会遇到module tkinter的问题) sklearn 一个基于Python ...

  8. 第一节:python读取excel文件

    写在前面: (1)Excel中数字格式int(1),读出的是float(1.0)类型,导致传参时造成不同,强制转换时,int(str(1.0))在2.7版本又会报错ValueError: invali ...

  9. Jmeter设置集合点(并发测试)

    什么是集合点? 让所有请求在不满足条件的时候处于等待状态. 如何实现? 使用jmeter中的同步计时器Synchronizing Timer来实现 集合点的位置 因为集合点是在取样器sampler(例 ...

  10. dockerfile-maven plugin自动镜像制作并发布

    环境准备:win10+docker 1.打开hyper-v 2.下载最新版本docker:https://store.docker.com/editions/community/docker-ce-d ...