loj2314 「NOIP2017」小凯的疑惑[同余最短路or数论]
这题以前就被灌输了“打表找规律”的思想,所以一直没有好好想这道题,过了一年还不太会qwq。虽然好像确实很简单,但是还是带着感觉会被嘲讽的心态写这个题解。。。而且还有一个log做法不会。。。
法1:(一开始没看懂,后由hkk神仙教导ORZ)
因为$ax+by=k$如果无视$\{x,y\}$非负整数解的条件的话,显然由于$gcd(a,b)=1$,所以所有$k$都可以表出。那么依题意如果有$k$不可以表出,是因为受了题目非负整数解条件的限制,也就是$x<0,y<0$,又因为$x,y$不可能同时$<0$,所以就是要求$x,y$异号表出的最大$k$。不妨让$a$项的$x$为负,那么为了保证$x,y$所有的通解都是一正一负,必定可以得出最后取模简化后必须要有$a\in (-b,0),b\in (0,a)$(由扩欧得到,不在这个范围也可以取模得到)。为了最大,$x$必须为$-1$,$b$项必须为$a-1$,这样就可以保证$k$最大了。
所以$k=-a+(a-1)b=ab-a-b$。
法2:(同余类最短路)
有关同余类最短路我在这里写了一下,这里就不啰嗦了。然后根据这个原理,假设$a<b$,设$f[i]$表示$\min\{kb|kb\mod=i\}$,也就是最小可以用$b$的倍数表出的、模$a$余数为$i$的数。这个可以和套路一样建边跑最短路,最后按套路找$\max\{f[i]-a\}$就行了。但是这里数据规模很大。但是有一个特殊性质,$gcd(a,b)=1$,并且这个最短路实际就是从$f[0]$到$f[b\mod a]$到$f[2b\mod a]$,往后跑一条链......所以这个dis越跑越大,一直跑到$f[ab\mod a]=f[0]$发现没法松弛,终止。显然可证中间不会出现$f[kb\mod a]=f[0],k\in[1,a-1]$。那么可以直接得出结论在最后一次$f[(a-1)b\mod a]$的dis最大,因此答案就是$f[(a-1)b\mod a]-a=(a-1)b-a=ab-a-b$.
a,b=map(int,input().split())
print(a*b-a-b)
loj2314 「NOIP2017」小凯的疑惑[同余最短路or数论]的更多相关文章
- 【NOIP2017】小凯的疑惑
原题: 小凯手中有两种面值的金币,两种面值均为正整数且彼此互素.每种金币小凯都有 无数个.在不找零的情况下,仅凭这两种金币,有些物品他是无法准确支付的.现在小 凯想知道在无法准确支付的物品中,最贵的价 ...
- NOIP2017 D1T1小凯的疑惑
这应该是近年来最坑的第一题了. 我第一眼看到这题上来就打表,数据范围告诉我复杂度应该是log级的,然而一个小时后才发现是一个输出结论. 设较小数是a 较大数是b 写出几组可以发现一个规律就是一旦出现连 ...
- NOIP2017 D1T1 小凯的疑惑
洛谷P3951 看到题目,很容易想到这一题是求使ax+by=c(a,b,c∈N)无非负整数解的最大c 由裴蜀定理可知方程一定有整数解(a,b互素,gcd(a,b)=1|c) 解法一:暴力枚举 看到题目 ...
- LOJ2316. 「NOIP2017」逛公园【DP】【最短路】【思维】
LINK 思路 因为我想到的根本不是网上的普遍做法 所以常数出奇的大,而且做法极其暴力 可以形容是带优化的大模拟 进入正题: 首先一个很显然的思路是如果在合法的路径网络里面存在零环是有无数组解的 然后 ...
- luogu 3951 小凯的疑惑
noip2017 D1T1 小凯的疑惑 某zz选手没有看出这道结论题,同时写出了exgcd却不会用,只能打一个哈希表骗了30分 题目大意: 两个互质的正整数a和b,求一个最小的正整数使这个数无法表示为 ...
- 【比赛】NOIP2017 小凯的疑惑
找规律:ans=a*b-a-b 证明:(可见 体系知识) gcd(A, B) = 1 → lcm(A, B) = AB 剩余类,把所有整数划分成m个等价类,每个等价类由相互同余的整数组成 任何数分成m ...
- 联赛膜你测试20 T1 Simple 题解 && NOIP2017 小凯的疑惑 题解(赛瓦维斯特定理)
前言: 数学题,对于我这种菜B还是需要多磨啊 Simple 首先它问不是好数的数量,可以转化为用总数量减去是好数的数量. 求"好数"的数量: 由裴蜀定理得,如果某个数\(i\)不能 ...
- 「NOIP2017」宝藏
「NOIP2017」宝藏 题解 博客阅读效果更佳 又到了一年一度NOIPCSP-S 赛前复习做真题的时间 于是就遇上了这道题 首先观察数据范围 \(1 \le n \le 12\) ,那么极大可能性是 ...
- 「NOI2013」小 Q 的修炼 解题报告
「NOI2013」小 Q 的修炼 第一次完整的做出一个提答,花了半个晚上+一个上午+半个下午 总体来说太慢了 对于此题,我认为的难点是观察数据并猜测性质和读入操作 我隔一会就思考这个sb字符串读起来怎 ...
随机推荐
- 关于bootstrap的响应式插件respond.min.js在IE8下出现:拒绝访问。respond.min.js,行: 5,列: 746报错问题
本地在IE8浏览器下测试兼容性的时候,出现了以下的报错: 该问题在bootstrap的官网有介绍:https://v3.bootcss.com/getting-started
- 论文阅读 | Tackling Adversarial Examples in QA via Answer Sentence Selection
核心思想 基于阅读理解中QA系统的样本中可能混有对抗样本的情况,在寻找答案时,首先筛选出可能包含答案的句子,再做进一步推断. 方法 Part 1 given: 段落C query Q 段落切分成句 ...
- Flash中的SLC/MLC/MLC--基础
参考 1.http://www.upantool.com/jiaocheng/qita/2012/slc_mlc_tlc.html 2.http://www.2ic.cn/html/10/t-4324 ...
- 10.hive安装
上传hive安装包并解压 给hive设置一个软链接 给hive配置环境变量 sudo vim /etc/profile #hive export HIVE_HOME=/opt/modules/hive ...
- GridFS文件操作
目录 1. GridFS介绍 2. GridFS 存取文件测试 2.1 新建项目配置pom.xml 2.2 在application.yml配置mongodb 2.3 GridFS存取文件测试 2.4 ...
- springboot自动配置国际化失效分析
最近在整理springBoot国际化时,发现国际化没有生效,通过报错提示在 MessageTag -> doEndTag处打断点 最后发现messageSource并不是ResourceBund ...
- 【原创】大叔经验分享(62)kudu副本数量
kudu的副本数量是在表上设置,可以通过命令查看 # sudo -u kudu kudu cluster ksck $master ... Summary by table Name | RF | S ...
- python对比线程,进程,携程,异步,哪个快
目录概念介绍测试环境开始测试测试[单进程单线程]测试[多进程 并行]测试[多线程 并发]测试[协程 + 异步]结果对比绘图展示概念介绍首先简单介绍几个概念: 进程和线程进程就是一个程序在一个数据集上的 ...
- Oracle学习笔记:窗口函数
目录 1.测试数据 2.聚合函数+over() 3.partition by子句 4.order by子句 5.序列函数 5.1 分析函数之 ntile 5.2 分析函数之 row_number 5. ...
- vue入门:(条件渲染)
v-if v-show v-else 一.v-if:生成或者移出一个元素 <div id="example"> <button v-on:click=" ...