Problem Description

一个无环的有向图称为无环图(Directed Acyclic Graph),简称DAG图。

    AOE(Activity On Edge)网:顾名思义,用边表示活动的网,当然它也是DAG。与AOV不同,活动都表示在了边上,如下图所示:

                                     

    如上所示,共有11项活动(11条边),9个事件(9个顶点)。整个工程只有一个开始点和一个完成点。即只有一个入度为零的点(源点)和只有一个出度为零的点(汇点)。

    关键路径:是从开始点到完成点的最长路径的长度。路径的长度是边上活动耗费的时间。如上图所示,1 到2 到 5到7到9是关键路径(关键路径不止一条,请输出字典序最小的),权值的和为18。

Input

这里有多组数据,保证不超过10组,保证只有一个源点和汇点。输入一个顶点数n(2<=n<=10000),边数m(1<=m <=50000),接下来m行,输入起点sv,终点ev,权值w(1<=sv,ev<=n,sv != ev,1<=w <=20)。数据保证图连通。

Output

关键路径的权值和,并且从源点输出关键路径上的路径(如果有多条,请输出字典序最小的)。


题解:Bellman_Ford 算法可以用来求存在负权回路的最短路问题,对于一般的最短路用迪杰斯特拉算法就可以,但是如果存在了负环,那样可能会求出错误的最短路。Bellman_Ford 算法总来的来说思路我感觉差不多,就像是变形。详见Bellman_Ford算法。

#include <bits/stdc++.h>

using namespace std;

struct node
{
int u,v,w;
}a[50010];
int path[50010];
int dist[50010];
int from[50010];
int to[50010];
void bellman_ford(int s, int n, int m)
{
memset(path,0,sizeof(path));
memset(dist,0,sizeof(dist));
int f = 0;
for(int i = 2; i <= n; i ++)
{
f = 0;
for(int j = 1; j <= m; j ++)
{
int u = a[j].u;
int v = a[j].v;
int w = a[j].w;
if(dist[u] < dist[v] + w || (dist[u] == dist[v] + w && v < path[u]))
{
dist[u] = dist[v] + w;
path[u] = v;
f = 1;
}
}
if(f == 0) break;
}
// cout << s <<endl;
printf("%d\n",dist[s]);
int k = s;
while(path[k] != 0)
{
printf("%d %d\n",k,path[k]);
k = path[k];
}
}
int main()
{
int n,m,u,v,w,s;
while(scanf("%d%d",&n,&m)!=EOF)
{
memset(a,0,sizeof(a));
memset(from,0,sizeof(from));
memset(to,0,sizeof(to));
for(int i = 1; i <= m; i ++)
{
scanf("%d%d%d",&u,&v,&w);
a[i].u = u;
a[i].v = v;
a[i].w = w;
from[u] ++;
to[v] ++;
}
for(int i = 1; i <= n; i ++)
{
if(to[i] == 0)
{
s = i;
break;
}
}
bellman_ford(s,n,m);
}
return 0;
}

数据结构实验之图论十一:AOE网上的关键路径【Bellman_Ford算法】的更多相关文章

  1. SDUTOJ 2498 数据结构实验之图论十一:AOE网上的关键路径

    题目链接:http://acm.sdut.edu.cn/onlinejudge2/index.php/Home/Index/problemdetail/pid/2498.html 题目大意 略. 分析 ...

  2. SDUT OJ 数据结构实验之图论十:判断给定图是否存在合法拓扑序列

    数据结构实验之图论十:判断给定图是否存在合法拓扑序列 Time Limit: 1000 ms Memory Limit: 65536 KiB Submit Statistic Discuss Prob ...

  3. SDUT OJ 数据结构实验之图论八:欧拉回路

    数据结构实验之图论八:欧拉回路 Time Limit: 1000 ms Memory Limit: 65536 KiB Submit Statistic Discuss Problem Descrip ...

  4. SDUT OJ 数据结构实验之图论六:村村通公路(最小生成树)

    数据结构实验之图论六:村村通公路 Time Limit: 1000 ms Memory Limit: 65536 KiB Submit Statistic Discuss Problem Descri ...

  5. SDUT OJ 数据结构实验之图论五:从起始点到目标点的最短步数(BFS)

    数据结构实验之图论五:从起始点到目标点的最短步数(BFS) Time Limit: 1000 ms Memory Limit: 65536 KiB Submit Statistic Discuss P ...

  6. SDUT OJ 数据结构实验之图论四:迷宫探索

    数据结构实验之图论四:迷宫探索 Time Limit: 1000 ms Memory Limit: 65536 KiB Submit Statistic Discuss Problem Descrip ...

  7. 数据结构实验之图论七:驴友计划 ( 最短路径 Dijkstra 算法 )

    数据结构实验之图论七:驴友计划 Time Limit: 1000 ms           Memory Limit: 65536 KiB Submit Statistic Discuss Probl ...

  8. SDUT 3363 数据结构实验之图论七:驴友计划

    数据结构实验之图论七:驴友计划 Time Limit: 1000MS Memory Limit: 65536KB Submit Statistic Problem Description 做为一个资深 ...

  9. SDUT 3364 数据结构实验之图论八:欧拉回路

    数据结构实验之图论八:欧拉回路 Time Limit: 1000MS Memory Limit: 65536KB Submit Statistic Problem Description 在哥尼斯堡的 ...

随机推荐

  1. C#进阶系列——WebApi异常处理解决方案

    阅读目录 一.使用异常筛选器捕获所有异常 二.HttpResponseException自定义异常信息 三.返回HttpError 四.总结 正文 为什么说是实践?因为在http://www.asp. ...

  2. Git撤回已经推送(push)至远程仓库提交(commit)的版本

    背景 所以,经常会遇到已经提交远程仓库,但是又不是我想要的版本,要撤下来. 回退版本一般使用git reset,又分为: # 不删除工作空间改动代码,撤销commit,不撤销git add . git ...

  3. PC启动过程详解

    系统启动过程 1. 预引导(Pre-Boot)阶段 2. 引导阶段 3. 加载内核阶段 4. 初始化内核阶段 5. 用户登录阶段 基本概念: BIOS:即“Basic Input/Output Sys ...

  4. 【转】使用Scanner输入字符串时next()和nextLine()区别

    在实现字符窗口的输入时,很多人更喜欢选择使用扫描器Scanner,它操作起来比较简单.在编程的过程中,我发现用Scanner实现字符串的输入有两种方法,一种是next(),一种nextLine(),但 ...

  5. RFC destination fails with error Incomplete Logon Data after system copy

    1. 问题现象 1.1在system copy后,提示RFC报错Unable to configure STMS 2.  重要的参考文件: 2.1RFC passwords not available ...

  6. nexus3上传jar包

    1.选择仓库位置 2.填写jar包信息 3.查看上传的jar包信息 上传成功. 4.maven的settings.xml完整配置 <?xml version="1.0" en ...

  7. 深入浅出Git(偏向理论)

    目录 一.理论概述 1. 什么是Git 版本控制系统分类 2. GitLab和GitHub是什么 3.Git功能 二.结合具体命令了解其工作 1.环境 2.部署 Git仓库的使用 简单命令解释 Git ...

  8. 记录java+testng运行selenium(二)---定义元素类及浏览器

    一: 元素类 整体思路: 1. 根据状态可分可见和不可见两种 2. 同一个路径可以查找单个元素或多个元素 3. 获取元素text或者指定的value值 4. selenium对元素操作有两种,一是通过 ...

  9. iveiw DatePicker 只能选择本月之前的日期,本月包括之后都不能选择

    日期判断只能选择本月之前的日期 <DatePicker type="date" :options="options3" format="yyyy ...

  10. 静态链接 VS 动态链接

    什么是链接? 链接其实就是连接的意思,将所有相关的东西连接起来. 简单理解静态连接和动态链接: 静态链接:编译时完成链接 动态链接:程序运行起来后,根据需求再去链接,这就是动态链接 静态链接 什么是静 ...