Hdu 6268 点分治 树上背包 bitset 优化
给你一颗大小为n(3000)的树,树上每个点有点权(100000),再给你一个数m(100000)
i为1~m,问树中是否存在一个子图,使得权值为i.
每次solve到一个节点 用一个bitset维护所有经过它的链的取值(calc前要先初始化当前节点的bitset)
复杂度为nlognm/64
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define ull unsigned long long
#define mst(a,b) memset((a),(b),sizeof(a))
#define mp(a,b) make_pair(a,b)
#define pi acos(-1)
#define pii pair<int,int>
#define pb push_back
const int INF = 0x3f3f3f3f;
const double eps = 1e-;
const int maxn = 3e3 + ;
const int maxm = 1e5 + ;
const ll mod = ; int n,m;
vector<int>vec[maxn];
bool used[maxn];
int a[maxn],root,sz[maxn],son[maxn],all; void getroot(int u,int fa) {
sz[u] = , son[u] = ;
for(int i = ; i < vec[u].size(); i++) {
int v = vec[u][i];
if(used[v] || v == fa) continue;
getroot(v,u);
sz[u] += sz[v];
son[u] = max(son[u],sz[v]);
}
son[u] = max(son[u],all - son[u]);
if(son[u] < son[root]) root = u;
} bitset<maxm>bit[maxn],ans; void calc(int u,int fa) {
sz[u] = , bit[u] <<= a[u];
for(int i = ; i < vec[u].size(); i++) {
int v = vec[u][i];
if(used[v] || v == fa) continue;
bit[v] = bit[u];
calc(v,u);
sz[u] += sz[v];
bit[u] |= bit[v];
}
} void solve(int u) {
used[u] = true;
bit[u].reset(), bit[u].set();
calc(u,);
ans |= bit[u];
for(int i = ; i < vec[u].size(); i++) {
int v = vec[u][i];
if(used[v]) continue;
root = ;
all = sz[v];
getroot(v,);
solve(root);
}
} int main() {
#ifdef local
freopen("data.txt", "r", stdin);
// freopen("data.txt", "w", stdout);
#endif
int t;
scanf("%d",&t);
while(t--) {
ans.reset();
scanf("%d%d",&n,&m);
for(int i = ; i <= n; i++) vec[i].clear(),used[i] = false;
for(int i = ; i < n; i++) {
int u,v;
scanf("%d%d",&u,&v);
vec[u].push_back(v);
vec[v].push_back(u);
}
for(int i = ; i <= n; i++) scanf("%d",&a[i]);
root = ;
son[] = 1e9;
all = n;
getroot(,);
solve(root);
for(int i = ; i <= m; i++) printf("%d",(int)ans[i]);
printf("\n");
}
return ;
}
Hdu 6268 点分治 树上背包 bitset 优化的更多相关文章
- HDOJ(HDU).2844 Coins (DP 多重背包+二进制优化)
HDOJ(HDU).2844 Coins (DP 多重背包+二进制优化) 题意分析 先把每种硬币按照二进制拆分好,然后做01背包即可.需要注意的是本题只需要求解可以凑出几种金钱的价格,而不需要输出种数 ...
- HDOJ(HDU).1059 Dividing(DP 多重背包+二进制优化)
HDOJ(HDU).1059 Dividing(DP 多重背包+二进制优化) 题意分析 给出一系列的石头的数量,然后问石头能否被平分成为价值相等的2份.首先可以确定的是如果石头的价值总和为奇数的话,那 ...
- [U53204] 树上背包的优化
题目链接 本文旨在介绍树上背包的优化. 可见例题,例题中N,M∈[1,100000]N,M \in [1,100000]N,M∈[1,100000]的数据量让O(nm2)O(nm^2)O(nm2)的朴 ...
- HDU 6268 Master of Subgraph (2017 CCPC 杭州 E题,树分治 + 树上背包)
题目链接 2017 CCPC Hangzhou Problem E 题意 给定一棵树,每个点有一个权值,现在我们可以选一些连通的点,并且把这点选出来的点的权值相加,得到一个和. 求$[1, m] ...
- HDU 5808 Price List Strike Back bitset优化的背包。。水过去了
http://acm.hdu.edu.cn/showproblem.php?pid=5808 用bitset<120>dp,表示dp[0] = true,表示0出现过,dp[100] = ...
- 二分图染色+分组背包+bitset优化——hdu5313
首先就是求联通块,每个联通块里记录两个部分的元素个数 目标是使一边的体积接近n/2 那么每个联通块作为一组,进行分组背包,dp[i]表示体积i是否可以被凑出来,可行性背包是可以用bitset优化的 最 ...
- 01二维背包+bitset优化——hdu5890
口胡一种别的解法: 三重退背包,g1[j]k]表示不选x的选了j件物品,体积为k的方案数,g[0][0] = 1 , g1[j][k]=dp[j][k]-g1[j-1][k-a[x]] 然后按这样再退 ...
- hdu 5506 GT and set dfs+bitset优化
GT and set Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Probl ...
- hdu 1011 Starship Troopers(树上背包)
Problem Description You, the leader of Starship Troopers, are sent to destroy a base of the bugs. Th ...
随机推荐
- CISC和RISC的区别
转载于http://blog.sina.com.cn/s/blog_9d5430ce0100x5pb.html RISC(Reduced Instruction Set Computer)和CISC( ...
- 安装gnocchi
在控制节点上执行 #!/bin/bash MYSQL_ROOT_PASSWD='m4r!adbOP' GNOCCHI_PASSWD='gnocchi1234!' CEILOMETER_PASSWD=' ...
- Linux 文件和目录的属性及权限
一.Linux中的文件 1.1文件属性概述 Linux里一切皆文件! Linux系统中的文件或目录的属性主要包括;索引节点(inode).文件类型.权限属性.链接数.所归属的用户组.最近修改时间等内容 ...
- Spring自定义参数解析器
结合redis编写User自定义参数解析器UserArgumentResolver import javax.servlet.http.Cookie; import javax.servlet.htt ...
- 阿里云语音合成(汉语英语)带UI界面的小程序(python)
一,项目说明 将汉文转汉语.英文转英语,同时又有逗号<###English###>,<,,,>和句号<...>标志符用于文件处理.其中英文包含在### 英文 ### ...
- C# WebApi日期格式化
WebApi中日期格式化:在WebApiConfig文件中加入如下代码即可,之前遇到的问题,日期中总带有T,现在记录一下解决的方法. 代码: private static void ReturnDat ...
- Flink概述
计算引擎 大数据计算引擎分为离线计算和实时计算,离线计算就是我们通常说的批计算,代表是Hadoop MapReduce.Hive等大数据技术.实时计算也被称作流计算,代表是Storm.Spark St ...
- fork 代码进阶
fork进阶知识 先看一份代码: [cpp] view plain copy /* * fork_test.c * version 2 * Created on: 2010-5-29 * ...
- webpack的postcss的基本应用
PostCss是什么? PostCSS在webpack中的基本应用 一.PostCss是什么? 如果有深入学习PostCss需求的话可以参考大漠的资料:https://www.w3cplus.com/ ...
- (转)Android刷机的一些知识整理
刷机概述刷机原因刷机可以升级和破解固件(在Android上:即可以升级系统,更改系统,获取Root权限):破解系统的原因①安装第三方软件不需要签名,不受证书的束缚:②修改系统的文件,达到系统的瘦身,以 ...