Vasya and Beautiful Arrays CodeForces - 354C (数论,枚举)
Vasya and Beautiful Arrays
Vasya's got a birthday coming up and his mom decided to give him an array of positive integers a of length n.
Vasya thinks that an array's beauty is the greatest common divisor of all its elements. His mom, of course, wants to give him as beautiful an array as possible (with largest possible beauty). Unfortunately, the shop has only one array a left. On the plus side, the seller said that he could decrease some numbers in the array (no more than by k for each number).
The seller can obtain array b from array a if the following conditions hold: b**i > 0; 0 ≤ a**i - b**i ≤ k for all 1 ≤ i ≤ n.
Help mom find the maximum possible beauty of the array she will give to Vasya (that seller can obtain).
Input
The first line contains two integers n and k (1 ≤ n ≤ 3·105; 1 ≤ k ≤ 106). The second line contains n integers a**i (1 ≤ a**i ≤ 106) — array a.
Output
In the single line print a single number — the maximum possible beauty of the resulting array.
Examples
Input
6 13 6 10 12 13 16
Output
3
Input
5 38 21 52 15 77
Output
7
Note
In the first sample we can obtain the array:
3 6 9 12 12 15
In the second sample we can obtain the next array:
7 21 49 14 77
题意:
给你一个含有n个数的数组,和一个整数k。
对于数组中的每一个数\(a[i]\), 可以减去\([0,k]\) 。问你修改之后数组的最大公约数是多少?
思路:
首先确定答案的上下界限。
设mn 是数组a中的最小数。
设mx是数组a中的最大值。
显然答案的最大值是mn
再考虑下,如果mn>=k+1 ,
那么答案的最小值是k+1 ,因为 将a[i] 对k+1 取模,剩余的每一个a[i]<=k,那么都可以将大于0的a[i],减为0,即gcd为k+1.
所以现在确定的上下届为\([k+1,mn]\)
那么我们不妨枚举gcd,
从mn 枚举到k+1。
那么这个过程是\(O(n)\)的
对于当前枚举到的gcd为x,如何判断可以修正数组使gcd为x呢?
我们看下只有当一个数\(a[i]\) 在这个区间\([i*x,i*x+k]\)中才可以变为x的倍数。
如果每一个数都在这个区间,那么整个数组就可以修改为每一个a[i] 都是 x的倍数。
那么我们不妨枚举x的倍数i,利用前缀和在\(O(1)\) 时间内获得区间中有多少个数,
最后看总个数是否为N,就可以判断x是否满足条件了。
枚举x的倍数时间复杂度为\(O(log_x(mx))\)
总时间复杂度是\(O(n*logn)\) 可以通过。
细节见代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define sz(a) int(a.size())
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
#define du3(a,b,c) scanf("%d %d %d",&(a),&(b),&(c))
#define du2(a,b) scanf("%d %d",&(a),&(b))
#define du1(a) scanf("%d",&(a));
using namespace std;
typedef long long ll;
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
ll powmod(ll a, ll b, ll MOD) {a %= MOD; if (a == 0ll) {return 0ll;} ll ans = 1; while (b) {if (b & 1) {ans = ans * a % MOD;} a = a * a % MOD; b >>= 1;} return ans;}
void Pv(const vector<int> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%d", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}}
void Pvl(const vector<ll> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%lld", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}}
inline void getInt(int* p);
const int maxn = 1000010;
const int inf = 0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
int n;
int k;
int vis[maxn];
int sum[maxn];
int a[maxn];
int mn = inf;
int mx = -1;
bool check(int x)
{
int cnt = 0;
for (int i = 1; i * x <= mx; i++)
{
cnt += sum[min(i * x + k, mx)] - sum[i * x - 1];
}
return cnt == n;
}
int main()
{
//freopen("D:\\code\\text\\input.txt","r",stdin);
//freopen("D:\\code\\text\\output.txt","w",stdout);
gbtb;
cin >> n >> k;
repd(i, 1, n)
{
cin >> a[i];
vis[a[i]]++;
mn = min(mn, a[i]);
mx = max(mx, a[i]);
}
repd(i, 1, mx)
{
sum[i] = sum[i - 1] + vis[i];
}
// [ k+1 , mn ]
//
if (mn <= k + 1)
{
cout << mn << endl;
}
else
{
for (int i = mn; i >= k + 1; i--)
{
if (check(i))
{
cout << i << endl;
break;
}
}
}
return 0;
}
inline void getInt(int* p) {
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '0');
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 - ch + '0';
}
}
else {
*p = ch - '0';
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 + ch - '0';
}
}
}
Vasya and Beautiful Arrays CodeForces - 354C (数论,枚举)的更多相关文章
- E. Vasya and Beautiful Arrays
http://codeforces.com/contest/355/problem/E 每个数都可以变成段 [a-k,a], 某一个因子是否被所有的段包含,就是把这个因子以及它的所有倍数看成点, 看是 ...
- Coprime Arrays CodeForces - 915G (数论水题)
反演一下可以得到$b_i=\sum\limits_{d=1}^i{\mu(i)(\lfloor \frac{i}{d} \rfloor})^n$ 整除分块的话会T, 可以维护一个差分, 优化到$O(n ...
- Vasya and a Tree CodeForces - 1076E(线段树+dfs)
I - Vasya and a Tree CodeForces - 1076E 其实参考完别人的思路,写完程序交上去,还是没理解啥意思..昨晚再仔细想了想.终于弄明白了(有可能不对 题意是有一棵树n个 ...
- D - Beautiful Graph CodeForces - 1093D (二分图染色+方案数)
D - Beautiful Graph CodeForces - 1093D You are given an undirected unweighted graph consisting of nn ...
- Codeforces - 55D Beautiful numbers (数位dp+数论)
题意:求[L,R](1<=L<=R<=9e18)区间中所有能被自己数位上的非零数整除的数的个数 分析:丛数据量可以分析出是用数位dp求解,区间个数可以转化为sum(R)-sum(L- ...
- Codeforces 354C 暴力 数论
题意:给你一个数组,你可以把数组中的数减少最多k,问数组中的所有数的GCD最大是多少? 思路:容易发现,GCD的上限是数组中最小的那个数,而因为最多可以减少k,及可以凑出来的余数最大是k,那么GCD的 ...
- Codeforces Round #319 (Div. 2) C Vasya and Petya's Game (数论)
因为所有整数都能被唯一分解,p1^a1*p2^a2*...*pi^ai,而一次询问的数可以分解为p1^a1k*p2^a2k*...*pi^aik,这次询问会把所有a1>=a1k &&am ...
- CodeForces 300C --数论
A - A Time Limit:2000MS Memory Limit:262144KB 64bit IO Format:%I64d & %I64u Submit Statu ...
- CodeForces - 837E - Vasya's Function | Educational Codeforces Round 26
/* CodeForces - 837E - Vasya's Function [ 数论 ] | Educational Codeforces Round 26 题意: f(a, 0) = 0; f( ...
随机推荐
- PHP实现发送模板消息(微信公众号版)
以下为开发步骤: 1.微信公众号为服务号且开通微信认证(其他类型账号不能发送) 2.ip白名单设置你的服务器ip(用于获取access_token) 3.网页授权你的域名(用于获取用户的openid) ...
- docker中如何部署mysql
这篇博文讲很详细了. 链接
- CImage 和 CvvImage 命名空间问题
[问题:名称CImage同时在两个库中出现] 1.出现: ATL #include <atlimage.h> OpenCv #include <highgui.h> #defi ...
- Reactor系列(四)subscribe订阅
#java# #reactor# #subcribe# #订阅# 视频讲解 :https://www.bilibili.com/video/av79117693/ FluxMonoTestCase.j ...
- HBase的简单介绍,寻址过程,读写过程
HBase是列族数据库,主要由,表,行键,列族,列标识,值,时间戳 组成, 表 其中HBase 主要底层存储依赖与hdfs,可以在HDFS中看到每个表名都作为一个独立的目录结构 ...
- Python openCV基础操作
1.图片加载.显示和保存 import cv2 # 读取图片 img = cv2.imread("img1.jpg") # 生成灰色图片 imgGrey = cv2.imread( ...
- 【转贴】内存重要参数详解 RAS CAS
内存重要参数详解 RAS CAS 分类: LINUX 2014-09-12 09:41:58 原文地址:内存重要参数详解 RAS CAS 作者:Reny http://blog.chinaunix.n ...
- DDL数据库对象管理
DDL数据库对象管理 约束的分类: 主键约束:primary key 要求主键列数据唯一,并且不允许为空. 外键约束:foreign key 用于在两表之间建立关系,需要指定引用主表的哪一列. 检查约 ...
- 一个包含python和java环境的dockerfile
现在一个项目中遇到python调用java的jar包的环境.为了方便发布,编写了这个dockerfile,作为基础镜像. #this docker file is used to build runt ...
- Redis 数据结构 & 原理 & 持久化
一 概述 redis是一种高级的key-value数据库,它跟memcached类似,不过数据可以持久化,而且支持的数据类型也很丰富. Redis支持五种数据类型:string(字符串),hash(哈 ...