Vasya and Beautiful Arrays

CodeForces - 354C

Vasya's got a birthday coming up and his mom decided to give him an array of positive integers a of length n.

Vasya thinks that an array's beauty is the greatest common divisor of all its elements. His mom, of course, wants to give him as beautiful an array as possible (with largest possible beauty). Unfortunately, the shop has only one array a left. On the plus side, the seller said that he could decrease some numbers in the array (no more than by k for each number).

The seller can obtain array b from array a if the following conditions hold: b**i > 0; 0 ≤ a**i - b**i ≤ k for all 1 ≤ i ≤ n.

Help mom find the maximum possible beauty of the array she will give to Vasya (that seller can obtain).

Input

The first line contains two integers n and k (1 ≤ n ≤ 3·105; 1 ≤ k ≤ 106). The second line contains n integers a**i (1 ≤ a**i ≤ 106) — array a.

Output

In the single line print a single number — the maximum possible beauty of the resulting array.

Examples

Input

6 13 6 10 12 13 16

Output

3

Input

5 38 21 52 15 77

Output

7

Note

In the first sample we can obtain the array:

3 6 9 12 12 15

In the second sample we can obtain the next array:

7 21 49 14 77

题意:

给你一个含有n个数的数组,和一个整数k。

对于数组中的每一个数\(a[i]\), 可以减去\([0,k]\) 。问你修改之后数组的最大公约数是多少?

思路:

首先确定答案的上下界限。

设mn 是数组a中的最小数。

设mx是数组a中的最大值。

显然答案的最大值是mn

再考虑下,如果mn>=k+1 ,

那么答案的最小值是k+1 ,因为 将a[i] 对k+1 取模,剩余的每一个a[i]<=k,那么都可以将大于0的a[i],减为0,即gcd为k+1.

所以现在确定的上下届为\([k+1,mn]\)

那么我们不妨枚举gcd,

从mn 枚举到k+1。

那么这个过程是\(O(n)\)的

对于当前枚举到的gcd为x,如何判断可以修正数组使gcd为x呢?

我们看下只有当一个数\(a[i]\) 在这个区间\([i*x,i*x+k]\)中才可以变为x的倍数。

如果每一个数都在这个区间,那么整个数组就可以修改为每一个a[i] 都是 x的倍数。

那么我们不妨枚举x的倍数i,利用前缀和在\(O(1)\) 时间内获得区间中有多少个数,

最后看总个数是否为N,就可以判断x是否满足条件了。

枚举x的倍数时间复杂度为\(O(log_x(mx))\)

总时间复杂度是\(O(n*logn)\) 可以通过。

细节见代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define sz(a) int(a.size())
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
#define du3(a,b,c) scanf("%d %d %d",&(a),&(b),&(c))
#define du2(a,b) scanf("%d %d",&(a),&(b))
#define du1(a) scanf("%d",&(a));
using namespace std;
typedef long long ll;
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
ll powmod(ll a, ll b, ll MOD) {a %= MOD; if (a == 0ll) {return 0ll;} ll ans = 1; while (b) {if (b & 1) {ans = ans * a % MOD;} a = a * a % MOD; b >>= 1;} return ans;}
void Pv(const vector<int> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%d", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}}
void Pvl(const vector<ll> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%lld", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}} inline void getInt(int* p);
const int maxn = 1000010;
const int inf = 0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
int n;
int k;
int vis[maxn];
int sum[maxn];
int a[maxn];
int mn = inf;
int mx = -1;
bool check(int x)
{
int cnt = 0;
for (int i = 1; i * x <= mx; i++)
{
cnt += sum[min(i * x + k, mx)] - sum[i * x - 1];
}
return cnt == n;
}
int main()
{
//freopen("D:\\code\\text\\input.txt","r",stdin);
//freopen("D:\\code\\text\\output.txt","w",stdout);
gbtb;
cin >> n >> k;
repd(i, 1, n)
{
cin >> a[i];
vis[a[i]]++;
mn = min(mn, a[i]);
mx = max(mx, a[i]);
}
repd(i, 1, mx)
{
sum[i] = sum[i - 1] + vis[i];
}
// [ k+1 , mn ]
//
if (mn <= k + 1)
{
cout << mn << endl;
}
else
{
for (int i = mn; i >= k + 1; i--)
{
if (check(i))
{
cout << i << endl;
break;
}
}
} return 0;
} inline void getInt(int* p) {
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '0');
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 - ch + '0';
}
}
else {
*p = ch - '0';
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 + ch - '0';
}
}
}

Vasya and Beautiful Arrays CodeForces - 354C (数论,枚举)的更多相关文章

  1. E. Vasya and Beautiful Arrays

    http://codeforces.com/contest/355/problem/E 每个数都可以变成段 [a-k,a], 某一个因子是否被所有的段包含,就是把这个因子以及它的所有倍数看成点, 看是 ...

  2. Coprime Arrays CodeForces - 915G (数论水题)

    反演一下可以得到$b_i=\sum\limits_{d=1}^i{\mu(i)(\lfloor \frac{i}{d} \rfloor})^n$ 整除分块的话会T, 可以维护一个差分, 优化到$O(n ...

  3. Vasya and a Tree CodeForces - 1076E(线段树+dfs)

    I - Vasya and a Tree CodeForces - 1076E 其实参考完别人的思路,写完程序交上去,还是没理解啥意思..昨晚再仔细想了想.终于弄明白了(有可能不对 题意是有一棵树n个 ...

  4. D - Beautiful Graph CodeForces - 1093D (二分图染色+方案数)

    D - Beautiful Graph CodeForces - 1093D You are given an undirected unweighted graph consisting of nn ...

  5. Codeforces - 55D Beautiful numbers (数位dp+数论)

    题意:求[L,R](1<=L<=R<=9e18)区间中所有能被自己数位上的非零数整除的数的个数 分析:丛数据量可以分析出是用数位dp求解,区间个数可以转化为sum(R)-sum(L- ...

  6. Codeforces 354C 暴力 数论

    题意:给你一个数组,你可以把数组中的数减少最多k,问数组中的所有数的GCD最大是多少? 思路:容易发现,GCD的上限是数组中最小的那个数,而因为最多可以减少k,及可以凑出来的余数最大是k,那么GCD的 ...

  7. Codeforces Round #319 (Div. 2) C Vasya and Petya's Game (数论)

    因为所有整数都能被唯一分解,p1^a1*p2^a2*...*pi^ai,而一次询问的数可以分解为p1^a1k*p2^a2k*...*pi^aik,这次询问会把所有a1>=a1k &&am ...

  8. CodeForces 300C --数论

    A - A Time Limit:2000MS     Memory Limit:262144KB     64bit IO Format:%I64d & %I64u Submit Statu ...

  9. CodeForces - 837E - Vasya's Function | Educational Codeforces Round 26

    /* CodeForces - 837E - Vasya's Function [ 数论 ] | Educational Codeforces Round 26 题意: f(a, 0) = 0; f( ...

随机推荐

  1. 获取Xshell Xftp等官网下载地址

    1. 首先还是得填写邮箱获取试用链接地址,例如我这次获取的是: https://cdn.netsarang.net/c5711331/Xshell-6.0.0175.exe 关键需要记下 c57113 ...

  2. shell备份脚本

    #!/bin/bash #不存在的变量终止脚本执行 set -o nounset #执行出错终止脚本执行 set -o errexit #递归列出文件的绝对路径并执行压缩 delDir=`date - ...

  3. orcale备份语句

    1.创建一个文件夹,比如d盘下创建一个expdp的文件夹 d:\expdp2.使用一个用户,必须具有DBA权限 比如 sqlplus /nolog conn system/password@数据库连接 ...

  4. 最长回文 HDU - 3068(马拉车算法)

    Problem Description 给出一个只由小写英文字符a,b,c...y,z组成的字符串S,求S中最长回文串的长度. 回文就是正反读都是一样的字符串,如aba, abba等 Input 输入 ...

  5. Python初学者常见错误详解

    Python初学者常见错误详解 0.忘记写冒号 在 if.elif.else.for.while.class.def 语句后面忘记添加 “:”   if spam == 42 print('Hello ...

  6. fiddler笔记:web session窗口介绍

    1.web session列表的含义:(从左到右) # fiddler通过session生成的ID. Result 响应状态码. Host 接收请求的服务器的主机名和端口号. URL 请求资源的位置. ...

  7. VIM纵向编辑【转】

    原文:https://www.ibm.com/developerworks/cn/linux/l-cn-vimcolumn/index.html Vim 的纵向编辑模式启动方便,使用灵活,还可以配合上 ...

  8. 深度学习之卷积神经网络CNN及tensorflow代码实现示例

    深度学习之卷积神经网络CNN及tensorflow代码实现示例 2017年05月01日 13:28:21 cxmscb 阅读数 151413更多 分类专栏: 机器学习 深度学习 机器学习   版权声明 ...

  9. Unity上线google商店 用IL2Cpp打包64位版本和Android APP Bundle优化 及产生的bug

    ios刚上线,这边着手改成android版本,我开始使用的是unity2017.4.1版本 上传谷歌商店是出现这两个警告: 要支持64位,但是在2017版本上没有找到64位的打包选项,猜测应该是版本的 ...

  10. NetCore2.x 使用Log4Net(一)

    前言:本章仅仅是Log4Net的基本简单的运用,后续章节会按照我的项目使用情况进行深入研究 1.项目搭建 新建一个基于.netCore2.x的Web项目          =>   过程略 给新 ...