Geometry Problem

HDU - 6242

Alice is interesting in computation geometry problem recently. She found a interesting problem and solved it easily. Now she will give this problem to you :

You are given NN distinct points (Xi,Yi)(Xi,Yi) on the two-dimensional plane. Your task is to find a point PP and a real number RR, such that for at least ⌈N2⌉⌈N2⌉ given points, their distance to point PP is equal to RR.

Input

The first line is the number of test cases.

For each test case, the first line contains one positive number N(1≤N≤105)N(1≤N≤105).

The following NN lines describe the points. Each line contains two real numbers XiXiand YiYi (0≤|Xi|,|Yi|≤103)(0≤|Xi|,|Yi|≤103) indicating one give point. It's guaranteed that NN points are distinct.

Output

For each test case, output a single line with three real numbers XP,YP,RXP,YP,R, where (XP,YP)(XP,YP) is the coordinate of required point PP. Three real numbers you output should satisfy 0≤|XP|,|YP|,R≤1090≤|XP|,|YP|,R≤109.

It is guaranteed that there exists at least one solution satisfying all conditions. And if there are different solutions, print any one of them. The judge will regard two point's distance as RR if it is within an absolute error of 10−310−3 of RR.

Sample Input

1
7
1 1
1 0
1 -1
0 1
-1 1
0 -1
-1 0

Sample Output

0 0 1

题意:

给n个互补相同的二维坐标点,保证可以找到一个点\(p(x,y)\),满足存在\(ceil(n/2)\) 个点和这个点p的距离相同。

思路:

当n=1时,p可以为任意一点

当\(2<=n<=4\) 时,取任意两点的中点即可,

当n>=5 时,

我们随机3个互补相同的点,并找到以这3个点确定的圆的圆心以及半径R,然后计算有多少个点和这个圆心的距离为R,如果个数*2>=n,就说明该圆心就是要找的点,半径就是距离。

为什么这样可以?

因为保证一定存在解,那么一定有至少\(ceil(n/2)\) 个点在同一个圆上,那么找到3个点都在这个圆上的概率大概就是\((1/2)^3\) 那么期望大概就是8次就可以确定出圆心。

ac代码

#include<bits/stdc++.h>
#include<ctime>
using namespace std;
typedef long long ll;
typedef double ld;
const ld eps = 1e-6; int sgn(ld x)
{
if(fabs(x)<eps)
return 0;
if(x<0)
return -1;
else
{
return 1;
}
}
struct point
{
ld x,y;
point(){}
point(ld _x,ld _y)
{
x=_x;
y=_y;
}
point operator - (const point &b) const
{
return point(x-b.x,y-b.y);
}
ld operator ^ (const point &b) const
{
return x*b.y-y*b.x;
}
ld operator * (const point &b) const
{
return x*b.x+y*b.y;
} };
point getpoint(point a,point b,point c,point d)
{
point res;
ld a1,b1,c1,a2,b2,c2;
a1=a.y-b.y,b1=b.x-a.x,c1=a.x*b.y-b.x*a.y;
a2=c.y-d.y,b2=d.x-c.x,c2=c.x*d.y-d.x*c.y;
res.x=(b1*c2-b2*c1)/(a1*b2-a2*b1);
res.y=-(a1*c2-a2*c1)/(a1*b2-a2*b1);
return res;
}
struct line
{
point s,e;
line(){}
line(point _s,point _e)
{
s=_s;
e=_e;
}
pair<int,point> operator & (const line &b)const
{
point res=s;
if(sgn((s-e)^(b.s-b.e))==0)
{
if(sgn((s-b.e)^(b.s-b.e))==0)
{
return make_pair(0,res);
}else{
return make_pair(1,res);
}
}
res = getpoint(s,e,b.s,b.e);
return make_pair(2,res);
}
}; int t;
int n;
point a[100010];
ld R;
line l1,l2;
ld base=2e9;
line getline_(point aa,point bb)
{
ld xc=bb.x-aa.x;
ld yc=bb.y-aa.y;
if(sgn(yc)==0)
{
return line(point(bb.x,base),point(bb.x,-base));
}else
{
ld k=-1*xc/yc;
point mid=point((aa.x+bb.x)*0.5,(aa.y+bb.y)*0.5);
return line(point(mid.x+base,mid.y+base*k),point(mid.x-base,mid.y-base*k));
}
}
ld getdis(point aa,point bb)
{
return sqrt((aa.x-bb.x)*(aa.x-bb.x)+(aa.y-bb.y)*(aa.y-bb.y));
}
point c;
bool check(point aa,point bb,point cc)
{
l1=getline_(aa,bb);
l2=getline_(bb,cc);
pair<int,point> res=l1&l2;
if(res.first!=2)
{
return 0;
}else if(res.first==2)
{
c=res.second;
R=getdis(c,aa);
int cnt=0;
for(int i=1;i<=n;++i)
{
if(sgn(fabs(getdis(c,a[i]))-R)==0)
{
// cout<<getdis(c,a[i])<<endl;
cnt++;
}
}
// cout<<" cnt "<<" "<<cnt<<endl;
return cnt*2>=n;
}
}
//#define mp make_pair
//
//map<pair<int,pair<int,int> >,bool > vis;
int main()
{
// ios::sync_with_stdio(false);
// cin>>t;
int x,y;
scanf("%d",&t);
while(t--)
{
// vis.clear();
std::mt19937 rnd(time(NULL));
// cin>>n;
scanf("%d",&n);
for(int i=1;i<=n;++i)
{
scanf("%lf %lf",&a[i].x,&a[i].y);
// cin>>a[i].x>>a[i].y;
}
if(n==1)
{
c.x=0;
c.y=0;
R=getdis(c,a[1]);
}else if(n<=4)
{
c=point((a[1].x+a[2].x)*0.5,(a[1].y+a[2].y)*0.5);
R=getdis(c,a[1]);
}else
{
while(1)
{
int id1,id2,id3;
id1=rnd()%n+1;
do
{
id2=rnd()%n+1;
}while(id2==id1);
do
{
id3=rnd()%n+1;
}while(id3==id1||id3==id2);
// cout<<id1<<" "<<id2<<" "<<id3<<endl;
if(check(a[id1],a[id2],a[id3]))
{
break;
}
}
}
printf("%.5f %.5f %.5f\n",c.x+eps,c.y+eps,R);
// cout<<fixed<<setprecision(5)<<c.x+eps<<" "<<c.y+eps<<" "<<R<<endl;
}
return 0;
}

HDU - 6242 Geometry Problem (几何,思维,随机)的更多相关文章

  1. hdu 6242 Geometry Problem

    Geometry Problem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Other ...

  2. HDU 6242 Geometry Problem(计算几何 + 随机化)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6242 思路:当 n == 1 时 任取一点 p 作为圆心即可. n >= 2 && ...

  3. hdu 5605 geometry(几何,数学)

    Problem Description There is a point P at coordinate (x,y). A line goes through the point, and inter ...

  4. HDU - 6242:Geometry Problem(随机+几何)

    Alice is interesting in computation geometry problem recently. She found a interesting problem and s ...

  5. hdu 1086 You can Solve a Geometry Problem too (几何)

    You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/3 ...

  6. You can Solve a Geometry Problem too (hdu1086)几何,判断两线段相交

    You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/3276 ...

  7. hdu 1086 You can Solve a Geometry Problem too

    You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/3 ...

  8. (hdu step 7.1.2)You can Solve a Geometry Problem too(乞讨n条线段,相交两者之间的段数)

    称号: You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/ ...

  9. HDU 1086:You can Solve a Geometry Problem too

    pid=1086">You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others)    Mem ...

随机推荐

  1. 【Kail 学习笔记】Dmitry信息收集工具

    DMitry(Deepmagic Information Gathering Tool)是一个一体化的信息收集工具.它可以用来收集以下信息: 根据IP(或域名)来查询目标主机的Whois信息 在Net ...

  2. Zuul1与Spring Cloud Gateway对比

    一.API网关 1.1 Zuul1简介 1.2 Spring Cloud Gateway简介 二.对比 2.0 产品对比 2.1 性能对比 2.1.1 低并发场景 2.1.2 高并发场景 2.1.3 ...

  3. webpack简单配置

    1.代理配置 需要修改一下配置文件 config里的index.js,根据接口特点自主选取 2.解决图标显示路径错误问题 项目在打包完成后如果出现图片显示不了的问题,需要进行如下配置

  4. 最新 蚂蚁金服java校招面经 (含整理过的面试题大全)

    从6月到10月,经过4个月努力和坚持,自己有幸拿到了网易雷火.京东.去哪儿.蚂蚁金服等10家互联网公司的校招Offer,因为某些自身原因最终选择了蚂蚁金服.6.7月主要是做系统复习.项目复盘.Leet ...

  5. [转帖]CPU时间片

    CPU时间片 https://www.cnblogs.com/xingzc/p/6077214.html CPU的时间片 CPU的利用率好CPU的 load average 是不一样的 Conntex ...

  6. Interlocked

    Interlocked MSDN 描述:为多个线程共享的变量提供原子操作.主要函数如下: Interlocked.Increment 原子操作,递增指定变量的值并存储结果.Interlocked.De ...

  7. 怎样理解window.name

    window.name表示当前窗口的名字, 而非网页的名字, 网页的名字需要使用: document.title; window.name一般是空的字符串, 他的作用其实是配合配合超链接和表单的tar ...

  8. C# 重载,重写,代理,枚举实例

    1.日期说法时区不同所取到的值也不同, 多个国的服务器要注意这个玩意 DateTime newDate = DateTime.Now; Console.WriteLine(newDate.ToStri ...

  9. (一)SpringMvc简介以及第一个springmvc工程

    一.SpringMVC是什么? springmvc是Spring的一个模块,提供web层解决方案(就与MVC设计架构) 如上图, DispatcherServlet:前端控制器,由SpringMVC提 ...

  10. C#多线程的简单理解

    一.CLR线程池基础 创建和销毁线程是一个昂贵的操作,所以CLR管理了一个线程池(thread pool),可以将线程池看成一个黑盒. CLR初始化时,线程池中是没有线程的.线程的初始化与其他线程一样 ...