[ZJOI2019]语言——树剖+树上差分+线段树合并
SOLUTION
考虑一种非常\(naive\)的统计方法,就是对于每一个点\(u\),我们维护它能到达的点集\(S_u\),最后答案就是\(\frac{\sum\limits_{i=1}^{n}|S_i|}{2}\)
也就是说我们可以先树剖一下,对于每一个点都开一棵线段树,每次修改\(O(nlogn)\)地更新一下路径上的线段树,最后查询一下就行了
但是这样的复杂度是\(O(n^2log^2n)\)的,显然会炸。注意到每次是对一条链上的所有点操作,所以我们可以查分。又因为差分之后要把子树的贡献传上去,再上个线段树合并就行了,复杂度降为\(O(nlog^2n)\)
代码也比较好写,细节不多
#include <bits/stdc++.h>
using namespace std;
#define N 100000
#define ll long long
#define mp make_pair
#define pii pair<int, int>
#define pb push_back
#define mid ((l + r) >> 1)
int n, m;
vector<int> G[N + 5];
int sz[N + 5], fa[N + 5], d[N + 5], hson[N + 5], top[N + 5], dfn[N + 5], dfn_clk, id[N + 5];
int nid, root[N + 5], sumv[N << 7], ch[2][N << 7], addv[N << 7];
vector<pii> cf[N + 5], segs[N + 5];
ll ans;
void dfs1(int u, int pa) {
sz[u] = 1;
fa[u] = pa;
for (int i = 0, v; i < G[u].size(); ++i) {
v = G[u][i];
if (v == pa) continue;
d[v] = d[u] + 1;
dfs1(v, u);
sz[u] += sz[v];
if (sz[v] > sz[hson[u]]) hson[u] = v;
}
}
void dfs2(int u, int tp) {
dfn[u] = ++dfn_clk;
id[dfn_clk] = u;
top[u] = tp;
if (hson[u]) dfs2(hson[u], tp);
for (int i = 0, v; i < G[u].size(); ++i) {
v = G[u][i];
if (v == fa[u] || v == hson[u]) continue;
dfs2(v, v);
}
}
int lca(int x, int y) {
while (top[x] != top[y]) d[top[x]] > d[top[y]] ? x = fa[top[x]] : y = fa[top[y]];
return d[x] < d[y] ? x : y;
}
void addModify(int x, int s, int t) {
int z = lca(s, t);
cf[s].pb(mp(x, 1)), cf[t].pb(mp(x, 1));
cf[z].pb(mp(x, -1)), cf[fa[z]].pb(mp(x, -1));
while (top[s] != top[z]) segs[x].pb(mp(dfn[top[s]], dfn[s])), s = fa[top[s]];
segs[x].pb(mp(dfn[z], dfn[s]));
while (top[t] != top[z]) segs[x].pb(mp(dfn[top[t]], dfn[t])), t = fa[top[t]];
if (dfn[z] + 1 <= dfn[t]) segs[x].pb(mp(dfn[z] + 1, dfn[t]));
}
void pushup(int o, int l, int r) {
if (addv[o]) sumv[o] = r - l + 1;
else sumv[o] = sumv[ch[0][o]] + sumv[ch[1][o]];
}
void add(int &o, int l, int r, int L, int R, int k) {
if (!o) o = ++nid;
if (L <= l && r <= R) {
addv[o] += k;
pushup(o, l, r);
return ;
}
if (L <= mid) add(ch[0][o], l, mid, L, R, k);
if (R > mid) add(ch[1][o], mid + 1, r, L, R, k);
pushup(o, l, r);
}
void merge(int &o, int u, int l, int r) {
if (!o || !u) {
if (!o) o = u;
return ;
}
addv[o] += addv[u];
if (l < r) {
merge(ch[0][o], ch[0][u], l, mid);
merge(ch[1][o], ch[1][u], mid + 1, r);
}
pushup(o, l, r);
}
void dfs(int u) {
for (int i = 0, v; i < G[u].size(); ++i) {
v = G[u][i];
if (v == fa[u]) continue;
dfs(v);
merge(root[u], root[v], 1, n);
}
for (int i = 0; i < cf[u].size(); ++i)
for (int j = 0; j < segs[cf[u][i].first].size(); ++j)
add(root[u], 1, n, segs[cf[u][i].first][j].first, segs[cf[u][i].first][j].second, cf[u][i].second);
ans += max(0, sumv[root[u]] - 1); // 注意这里要与0取max
}
int main() {
scanf("%d%d", &n, &m);
for (int i = 1, x, y; i < n; ++i) {
scanf("%d%d", &x, &y);
G[x].pb(y), G[y].pb(x);
}
dfs1(1, 0), dfs2(1, 1);
for (int i = 1, s, t; i <= m; ++i) {
scanf("%d%d", &s, &t);
addModify(i, s, t);
}
dfs(1);
ans /= 2;
printf("%lld\n", ans);
return 0;
}
[ZJOI2019]语言——树剖+树上差分+线段树合并的更多相关文章
- [Luogu5327][ZJOI2019]语言(树上差分+线段树合并)
首先可以想到对每个点统计出所有经过它的链的并所包含的点数,然后可以直接得到答案.根据实现不同有下面几种方法.三个log:假如对每个点都存下经过它的链并S[x],那么每新加一条路径进来的时候,相当于在路 ...
- [BZOJ3307] 雨天的尾巴(树上差分+线段树合并)
[BZOJ3307] 雨天的尾巴(树上差分+线段树合并) 题面 给出一棵N个点的树,M次操作在链上加上某一种类别的物品,完成所有操作后,要求询问每个点上最多物品的类型. N, M≤100000 分析 ...
- [Vani有约会]雨天的尾巴(树上差分+线段树合并)
首先村落里的一共有n座房屋,并形成一个树状结构.然后救济粮分m次发放,每次选择两个房屋(x,y),然后对于x到y的路径上(含x和y)每座房子里发放一袋z类型的救济粮. 然后深绘里想知道,当所有的救济粮 ...
- Luogu5327 ZJOI2019语言(树上差分+线段树合并)
暴力树剖做法显然,即使做到两个log也不那么优美. 考虑避免树剖做到一个log.那么容易想到树上差分,也即要对每个点统计所有经过他的路径产生的总贡献(显然就是所有这些路径端点所构成的斯坦纳树大小),并 ...
- bzoj 3307: 雨天的尾巴【树剖lca+树上差分+线段树合并】
这居然是我第一次写线段树合并--所以我居然在合并的时候加点结果WAWAWAMLEMLEMLE--!ro的时候居然直接指到la就行-- 树上差分,每个点建一棵动态开点线段树,然后统计答案的时候合并即可 ...
- BZOJ4999:This Problem Is Too Simple!(DFS序&树上差分&线段树动态开点:区间修改单点查询)
Description 给您一颗树,每个节点有个初始值. 现在支持以下两种操作: 1. C i x(0<=x<2^31) 表示将i节点的值改为x. 2. Q i j x(0<=x&l ...
- 2018.08.28 洛谷P4556 [Vani有约会]雨天的尾巴(树上差分+线段树合并)
传送门 要求维护每个点上出现次数最多的颜色. 对于每次修改,我们用树上差分的思想,然后线段树合并统计答案就行了. 注意颜色很大需要离散化. 代码: #include<bits/stdc++.h& ...
- BZOJ 3307 雨天的尾巴 (树上差分+线段树合并)
题目大意:给你一棵树,树上一共n个节点,共m次操作,每次操作给一条链上的所有节点分配一个权值,求所有节点被分配到所有的权值里,出现次数最多的权值是多少,如果出现次数相同就输出最小的. (我辣鸡bzoj ...
- P4556 [Vani有约会]雨天的尾巴 /【模板】线段树合并 (树上差分+线段树合并)
显然的树上差分问题,最后要我们求每个点数量最多的物品,考虑对每个点建议线段树,查询子树时将线段树合并可以得到答案. 用动态开点的方式建立线段树,注意离散化. 1 #include<bits/st ...
随机推荐
- beego项目和go项目 打包部署到linux
参考文章: https://www.jianshu.com/p/64363dff9721 [beego项目] 一. 打包 1. 打开Terminal 定位到工程的 main.go 文件夹目录 2. 执 ...
- 【转】MySql 三大知识点——索引、锁、事务
索引 索引,类似书籍的目录,可以根据目录的某个页码立即找到对应的内容. 索引的优点:1. 天生排序.2. 快速查找. 索引的缺点:1. 占用空间.2. 降低更新表的速度. 注意点:小表使用全表扫描更快 ...
- eNSP——利用单臂路由实现VLAN间路由
原理: 以太网中,通常会使用VLAN技术隔离二层广播域来减少广播的影响,并增强网络的安全性和可管理性.其缺点是同时也严格地隔离了不同VLAN之间的任何二层流量,使分属于不同VLAN的用户不能直接互相通 ...
- [CF1146D]Frog Jumping_exgcd_堆优化dij
Frog Jumping 题目链接:http://codeforces.com/contest/1146/problem/D 数据范围:略. 题解: 首先发现,如果$x\ge a +b$,那么所有的$ ...
- Java学习路径
-------第一部分:基础语法-------- 1.输出语句 1.1 hello world 1.2 拼接输出.换行和不换行输出 1.3 拼接变量输出 2.输入语句: 2.1 定义变量,赋值(整数. ...
- (十三)springMvc 处理 Json
目录 文章目录 为什么用 Json 处理 json 的流程 环境准备 配置 json 转换器 后记 更新 为什么用 Json Json 格式简单,语法简单,解析简单 : 处理 json 的流程 判断客 ...
- mysql批量修改数据库表引擎
数据库表之前的引擎是MyISAM,影响事务操作,要改成Innodb引擎 查询表引擎 SELECT CONCAT(table_name,' ', engine) FROM information_sch ...
- ide的debug
webstom 新建立一个配置项 找到webpack.config.js,最后一行加上 devtool: "source-map" 然后点击debug
- hdu 2846 字典树变形
mark: 题目有字串匹配的过程 有两点 1.为了高效的匹配子串 可以把所有的子串都预处理进去 然后字典树计数就放在最后面 2.在同一个母串处理自串的时候 会有重复的时候 比如abab 这里去重用个 ...
- EF7 在ASP.NET5 RC1版本中数据结构合并的问题
由于EF版本和asp.net5版本不断更新导致命令出现冲突.最新命令如下: C:\ScrumBasic\ScrumBasic>dnx ef _/\__ ---==/ \\ ___ ___ |. ...