题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2842

题目:

Problem Description
Dumbear likes to play the Chinese Rings (Baguenaudier). It’s a game played with nine rings on a bar. The rules of this game are very simple: At first, the nine rings are all on the bar.
The first ring can be taken off or taken on with one step.
If the first k rings are all off and the (k + 1)th ring is on, then the (k + 2)th ring can be taken off or taken on with one step. (0 ≤ k ≤ 7)

Now consider a game with N (N ≤ 1,000,000,000) rings on a bar, Dumbear wants to make all the rings off the bar with least steps. But Dumbear is very dumb, so he wants you to help him.

 
Input
Each line of the input file contains a number N indicates the number of the rings on the bar. The last line of the input file contains a number "0".
 
Output
For each line, output an integer S indicates the least steps. For the integers may be very large, output S mod 200907.
 
Sample Input
1
4
0
 
Sample Output
1
10
 
题意:给你个n连环(就是平时玩的九连环类的益智玩具,还不知道的就请自行百度一下啦……),问最少要操作多少次才能把所有的环取下来~
思路:个人认为这是要靠经验来,没玩过的可能不知道该怎样取才能把所有的环都取下来。第n项与前几项的关系是f(n)=f(n-1)+2*f(n-2) + 1,解释一下这个递推公式就是你要取下第n个的话得先把1~n-2都取下来(第一个f(n-2)),第n-1个挂在上面,然后把第n个取下来(递推公式中1的由来),然后再把1~n-2全部挂上去(第二个f(n-2)),然后就是把第n-1取下去(f(n-1))。因为就可以构造出矩阵了,f[0] = 2, f[1] = 1, f[2] = 1;
        a[0][0] = 1, a[0][1] = 1, a[0][2] = 0;
        a[1][0] = 2, a[1][1] = 0, a[1][2] = 0;
        a[2][0] = 1, a[2][1] = 0, a[2][2] = 1。
 
代码实现如下:
 #include <cstdio>
#include <cstring> typedef long long ll;
const int mod = ;
int n;
int f[], a[][]; void mul(int f[], int a[][]) {
int c[];
memset(c, , sizeof(c));
for(int i = ; i < ; i++) {
for(int j = ; j < ; j++) {
c[i] = (c[i] + (ll) f[j] * a[j][i]) % mod;
}
}
memcpy(f, c, sizeof(c));
} void mulself(int a[][]) {
int c[][];
memset(c, , sizeof(c));
for(int i = ; i < ; i++) {
for(int j = ; j < ; j++) {
for(int k = ; k < ; k++) {
c[i][j] = (c[i][j] + (ll) a[i][k] * a[k][j]) % mod;
}
}
}
memcpy(a, c, sizeof(c));
} int main() {
while(~scanf("%d", &n) && n) {
if(n == ) {
printf("1\n");
continue;
}
if(n == ) {
printf("2\n");
continue;
}
f[] = , f[] = , f[] = ;
a[][] = , a[][] = , a[][] = ;
a[][] = , a[][] = , a[][] = ;
a[][] = , a[][] = , a[][] = ;
n = n - ;
for(; n; n >>= ) {
if(n & ) mul(f, a);
mulself(a);
}
printf("%d\n", f[] % mod);
}
return ;
}

Chinese Rings (九连环+矩阵快速幂)的更多相关文章

  1. HDU 2842 Chinese Rings( 递推关系式 + 矩阵快速幂 )

    链接:传送门 题意:解 N 连环最少步数 % 200907 思路:对于 N 连环来说,解 N 连环首先得先解 N-2 连环然后接着解第 N 个环,然后再将前面 N-2 个环放到棍子上,然后 N 连环问 ...

  2. hdu 2842 Chinese Rings 矩阵快速幂

    分析: 后面的环能不能取下来与前面的环有关,前面的环不被后面的环所影响.所以先取最后面的环 设状态F(n)表示n个环全部取下来的最少步数 先取第n个环,就得使1~n-2个环属于被取下来的状态,第n-1 ...

  3. jiulianhuan 快速幂--矩阵快速幂

    题目信息: 1471: Jiulianhuan 时间限制: 1 Sec  内存限制: 128 MB 提交: 95  解决: 22 题目描述 For each data set in the input ...

  4. 矩阵快速幂在ACM中的应用

    矩阵快速幂在ACM中的应用 16计算机2黄睿博 首发于个人博客http://www.cnblogs.com/BobHuang/ 作为一个acmer,矩阵在这个算法竞赛中还是蛮多的,一个优秀的算法可以影 ...

  5. HDU 5318——The Goddess Of The Moon——————【矩阵快速幂】

    The Goddess Of The Moon Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/ ...

  6. BNU29139——PvZ once again——————【矩阵快速幂】

    PvZ once again Time Limit: 2000ms Memory Limit: 65536KB 64-bit integer IO format: %lld      Java cla ...

  7. 矩阵快速幂 HDU 4565 So Easy!(简单?才怪!)

    题目链接 题意: 思路: 直接拿别人的图,自己写太麻烦了~ 然后就可以用矩阵快速幂套模板求递推式啦~ 另外: 这题想不到或者不会矩阵快速幂,根本没法做,还是2013年长沙邀请赛水题,也是2008年Go ...

  8. 51nod 算法马拉松18 B 非010串 矩阵快速幂

    非010串 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 如果一个01字符串满足不存在010这样的子串,那么称它为非010串. 求长度为n的非010串的个数.(对1e9+7取模) ...

  9. 51nod 1113 矩阵快速幂

    题目链接:51nod 1113 矩阵快速幂 模板题,学习下. #include<cstdio> #include<cmath> #include<cstring> ...

随机推荐

  1. MFC消息处理

    1.MFC窗口如何与AfxWndProc建立联系. 当一个新的CWnd派生类创建时,在调用CWnd::CreateEx()过程中,MFC都会安装AfxCbtFilterHook().这个Hook将拦截 ...

  2. JAVA中快速构建BEAN的方法

    首先,创建一个JAVA类,testBean.java. package com.beans; public class testBean { } 然后,添加私有成员字段. package com.be ...

  3. 【Docker 命令】- push 命令

    docker push : 将本地的镜像上传到镜像仓库,要先登陆到镜像仓库 语法 docker push [OPTIONS] NAME[:TAG] OPTIONS说明: --disable-conte ...

  4. RT-thread 设备驱动组件之PIN设备

    在RT-thread 2.0.0正式版中引入了pin设备作为杂类设备,其设备驱动文件pin.c在rt-thread-2.0.1\components\drivers\misc中,主要用于操作芯片GPI ...

  5. csrf漏洞攻击手段和影响详解

    针对web应用安全中csrf漏洞两种典型的攻击方式:即输入和执行,这种简单模式下的攻击手段以及中途包含确认页面的攻击方法. 图解什么是csrf漏洞 我们先进行约束,比如存在csrf漏洞的网站叫webA ...

  6. 【题解】51nod 1686第K大区间

    成功的秘诀,在于克服自己看题解的冲动……[笑哭].自己A掉这题还是灰常开心的~ 以及爱死 two - pointer ! two - pointer 大法是真的好哇……这个题目有上一题的经验:求第\( ...

  7. [洛谷P4900]食堂

    题目大意:$n(n\leqslant10^6)$组询问,每组询问给出$l,r(l,r\leqslant10^6)$,求($\{\dfrac ij\}$表示$\dfrac ij$的小数部分): $$\s ...

  8. POJ2945:Find the Clones——题解

    http://poj.org/problem?id=2945 还是trie树……对于结束标记累加并且开个数组记录一下即可. #include<cstdio> #include<cst ...

  9. BZOJ4517 & 洛谷4071:[SDOI2016]排列计数——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=4517 https://www.luogu.org/problemnew/show/P4071 求有 ...

  10. [bzoj] 2049 洞穴勘探 || LCT

    原题 这是一道LCT的板子题. 至于LCT--link cut tree,也叫动态树,用splay实现动态连边的树. 预备知识: 实边:一个非叶节点,向它的儿子中的一个连一条特殊的边,称为实边;该非叶 ...