计算最大公倍数

Static int gcd( int a, int b)
{
int t;
while( b>0)
{
t = b;
b = a % b;
a = t;
}
return a;
} private static int getGCD(int a, int b)
{
if (a == 0)
return b; while (a != b)
{
if (a > b)
a = a - b;
else if (b > a)
b = b - a;
else
return a;
}
}

最大公倍数_Greatest Common Divisor的更多相关文章

  1. 最大公约数和最小公倍数(Greatest Common Divisor and Least Common Multiple)

    定义: 最大公约数(英语:greatest common divisor,gcd).是数学词汇,指能够整除多个整数的最大正整数.而多个整数不能都为零.例如8和12的最大公因数为4. 最小公倍数是数论中 ...

  2. [UCSD白板题] Greatest Common Divisor

    Problem Introduction The greatest common divisor \(GCD(a, b)\) of two non-negative integers \(a\) an ...

  3. greatest common divisor

    One efficient way to compute the GCD of two numbers is to use Euclid's algorithm, which states the f ...

  4. 845. Greatest Common Divisor

    描述 Given two numbers, number a and number b. Find the greatest common divisor of the given two numbe ...

  5. codeforces#505--B Weakened Common Divisor

    B. Weakened Common Divisor time limit per test 1.5 seconds memory limit per test 256 megabytes input ...

  6. hdu 5207 Greatest Greatest Common Divisor 数学

    Greatest Greatest Common Divisor Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/ ...

  7. CF1025B Weakened Common Divisor 数学

    Weakened Common Divisor time limit per test 1.5 seconds memory limit per test 256 megabytes input st ...

  8. LeetCode 1071. 字符串的最大公因子(Greatest Common Divisor of Strings) 45

    1071. 字符串的最大公因子 1071. Greatest Common Divisor of Strings 题目描述 对于字符串 S 和 T,只有在 S = T + ... + T(T 与自身连 ...

  9. 【Leetcode_easy】1071. Greatest Common Divisor of Strings

    problem 1071. Greatest Common Divisor of Strings solution class Solution { public: string gcdOfStrin ...

随机推荐

  1. Notes of the scrum meeting(12.9)

    meeting time:14:00~17:00p.m.,December 9th,2013 meeting place:一号教学楼209 attendees: 顾育豪                 ...

  2. Delegate(QLabel和QComboBox)

    一.最终效果 二.实现思路 1.createEditor()中create两个控件,分别是QLabel和QComboBox,将其添加到一个widget中,然后返回该widget: 2.setEdito ...

  3. 【转】bind简单示例

    bind简单示例代码 namespace { class placeholder_ {}; placeholder_ __1; } template <typename R, typename ...

  4. <Effective C++>读书摘要--Designs and Declarations<二>

    <Item 20> Prefer pass-by-reference-to-const to pass-by-value 1.By default, C++ passes objects ...

  5. <Effective C++>读书摘要--Resource Management<一>

    1.除了内存资源以外,Other common resources include file descriptors, mutex locks, fonts and brushes in graphi ...

  6. 3DMAX2016安装教程【图文】

    下载安装包之后,双击setup.exe. 下面是安装图片教程: 点击安装 点击下一步. 如图输入序列号和产品密钥. 填写安装路径,然后下一步. 开始安装,等待. 安装成功.

  7. 简单理解SQL Server锁机制

    多个用户同时对数据库的并发操作时,可能会遇到下面几种情况,导致数据前后不一致: 1,A.B事务同时对同一个数据进行修改,后提交的人的修改结果会破坏先提交的(丢失更新): 2,事务A修改某一条数据还未提 ...

  8. [剑指Offer] 61.序列化二叉树

    题目描述 请实现两个函数,分别用来序列化和反序列化二叉树 /* struct TreeNode { int val; struct TreeNode *left; struct TreeNode *r ...

  9. InnoDB,select为啥会阻塞insert?

    MySQL的InnoDB的细粒度行锁,是它最吸引人的特性之一. 但是,如<InnoDB,5项最佳实践>所述,如果查询没有命中索引,也将退化为表锁. InnoDB的细粒度锁,是实现在索引记录 ...

  10. BZOJ 1930 吃豆豆(费用流)

    首先这题的两条线不相交的限制可以去掉,因为如果相交的话把点换一换是不影响最终结果的. 剩下的费用流建图是显然的,把点拆为两个,建立超级源点s和源点ss汇点t,连边(s,ss,2,0). 对于每个点,连 ...