最大公倍数_Greatest Common Divisor
计算最大公倍数
Static int gcd( int a, int b)
{
int t;
while( b>0)
{
t = b;
b = a % b;
a = t;
}
return a;
} private static int getGCD(int a, int b)
{
if (a == 0)
return b; while (a != b)
{
if (a > b)
a = a - b;
else if (b > a)
b = b - a;
else
return a;
}
}
最大公倍数_Greatest Common Divisor的更多相关文章
- 最大公约数和最小公倍数(Greatest Common Divisor and Least Common Multiple)
定义: 最大公约数(英语:greatest common divisor,gcd).是数学词汇,指能够整除多个整数的最大正整数.而多个整数不能都为零.例如8和12的最大公因数为4. 最小公倍数是数论中 ...
- [UCSD白板题] Greatest Common Divisor
Problem Introduction The greatest common divisor \(GCD(a, b)\) of two non-negative integers \(a\) an ...
- greatest common divisor
One efficient way to compute the GCD of two numbers is to use Euclid's algorithm, which states the f ...
- 845. Greatest Common Divisor
描述 Given two numbers, number a and number b. Find the greatest common divisor of the given two numbe ...
- codeforces#505--B Weakened Common Divisor
B. Weakened Common Divisor time limit per test 1.5 seconds memory limit per test 256 megabytes input ...
- hdu 5207 Greatest Greatest Common Divisor 数学
Greatest Greatest Common Divisor Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/ ...
- CF1025B Weakened Common Divisor 数学
Weakened Common Divisor time limit per test 1.5 seconds memory limit per test 256 megabytes input st ...
- LeetCode 1071. 字符串的最大公因子(Greatest Common Divisor of Strings) 45
1071. 字符串的最大公因子 1071. Greatest Common Divisor of Strings 题目描述 对于字符串 S 和 T,只有在 S = T + ... + T(T 与自身连 ...
- 【Leetcode_easy】1071. Greatest Common Divisor of Strings
problem 1071. Greatest Common Divisor of Strings solution class Solution { public: string gcdOfStrin ...
随机推荐
- Notes of the scrum meeting(12.9)
meeting time:14:00~17:00p.m.,December 9th,2013 meeting place:一号教学楼209 attendees: 顾育豪 ...
- Delegate(QLabel和QComboBox)
一.最终效果 二.实现思路 1.createEditor()中create两个控件,分别是QLabel和QComboBox,将其添加到一个widget中,然后返回该widget: 2.setEdito ...
- 【转】bind简单示例
bind简单示例代码 namespace { class placeholder_ {}; placeholder_ __1; } template <typename R, typename ...
- <Effective C++>读书摘要--Designs and Declarations<二>
<Item 20> Prefer pass-by-reference-to-const to pass-by-value 1.By default, C++ passes objects ...
- <Effective C++>读书摘要--Resource Management<一>
1.除了内存资源以外,Other common resources include file descriptors, mutex locks, fonts and brushes in graphi ...
- 3DMAX2016安装教程【图文】
下载安装包之后,双击setup.exe. 下面是安装图片教程: 点击安装 点击下一步. 如图输入序列号和产品密钥. 填写安装路径,然后下一步. 开始安装,等待. 安装成功.
- 简单理解SQL Server锁机制
多个用户同时对数据库的并发操作时,可能会遇到下面几种情况,导致数据前后不一致: 1,A.B事务同时对同一个数据进行修改,后提交的人的修改结果会破坏先提交的(丢失更新): 2,事务A修改某一条数据还未提 ...
- [剑指Offer] 61.序列化二叉树
题目描述 请实现两个函数,分别用来序列化和反序列化二叉树 /* struct TreeNode { int val; struct TreeNode *left; struct TreeNode *r ...
- InnoDB,select为啥会阻塞insert?
MySQL的InnoDB的细粒度行锁,是它最吸引人的特性之一. 但是,如<InnoDB,5项最佳实践>所述,如果查询没有命中索引,也将退化为表锁. InnoDB的细粒度锁,是实现在索引记录 ...
- BZOJ 1930 吃豆豆(费用流)
首先这题的两条线不相交的限制可以去掉,因为如果相交的话把点换一换是不影响最终结果的. 剩下的费用流建图是显然的,把点拆为两个,建立超级源点s和源点ss汇点t,连边(s,ss,2,0). 对于每个点,连 ...