链接:

https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=3592

题意:

平面上有n个点(1≤n≤1000),你的任务是让所有n个点连通。
为此,你可以新建一些边,费用等于两个端点的欧几里德距离的平方。
另外还有q(0≤q≤8)个“套餐”可以购买,如果你购买了第i个套餐,该套餐中的所有结点将变得相互连通。
第i个套餐的花费为Ci。求最小的花费。

分析:

最容易想到的算法是:先枚举购买哪些套餐,把套餐中包含的边的权值设为0,然后求最小生成树。
由于枚举量为O(2^q),给边排序的时间复杂度为O(n*nlogn),而排序之后每次Kruskal算法的时间复杂度为O(n*n),
因此总时间复杂度为O((2^q)*(n*n)+n*nlogn),对于题目的规模来说太大了。
只需一个小小的优化即可降低时间复杂度:先求一次原图(不购买任何套餐)的最小生成树,
得到n-1条边,然后每次枚举完套餐后只考虑套餐中的边和这n-1条边,
则枚举套餐之后再求最小生成树时,图上的边已经寥寥无几。
为什么可以这样呢?首先回顾一下,在Kruskal算法中,哪些边不会进入最小生成树。
答案是:两端已经属于同一个连通分量的边。买了套餐以后,相当于一些边的权变为0,
而对于不在套餐中的每条边e,排序在e之前的边一个都没少,反而可能多了一些权值为0的边,
所以在原图Kruskal时被“扔掉”的边,在后面的Kruskal中也一样会被扔掉。

代码:

 import java.io.*;
import java.util.*;
import static java.lang.Math.*; public class Main {
Scanner cin = new Scanner(new BufferedInputStream(System.in));
final int UP = 1000 + 5;
int pre[] = new int[UP];
int x[] = new int[UP], y[] = new int[UP], cost[] = new int[UP]; class Edge implements Comparable<Edge> {
int f, b, v; @Override
public int compareTo(Edge that) {
return v - that.v;
}
} int seek(int v) {
return pre[v] == v ? v : (pre[v] = seek(pre[v]));
} int MST(int n, ArrayList<Edge> e, ArrayList<Edge> res) {
if(n <= 1) return 0;
int m = e.size(), ans = 0;
for(int i = 0; i < m; i++) {
int pf = seek(e.get(i).f), pb = seek(e.get(i).b);
if(pf == pb) continue;
pre[pf] = pre[pb];
ans += e.get(i).v;
if(res != null) res.add(e.get(i));
if(--n == 1) break;
}
return ans;
} void MAIN() {
int T;
T = cin.nextInt();
while(T --> 0) {
@SuppressWarnings("unchecked")
ArrayList<Integer> subn[] = new ArrayList[8];
for(int i = 0; i < 8; i++) subn[i] = new ArrayList<Integer>();
int n = cin.nextInt();
int q = cin.nextInt();
for(int m, i = 0; i < q; i++) {
m = cin.nextInt();
cost[i] = cin.nextInt();
for(int t = 0; t < m; t++) subn[i].add(cin.nextInt()-1);
}
for(int i = 0; i < n; i++) {
x[i] = cin.nextInt();
y[i] = cin.nextInt();
} ArrayList<Edge> edge = new ArrayList<Edge>();
for(int i = 0; i < n; i++) {
for(int t = i+1; t < n; t++) {
Edge e = new Edge();
e.f = i; e.b = t;
e.v = (x[i]-x[t])*(x[i]-x[t]) + (y[i]-y[t])*(y[i]-y[t]);
edge.add(e);
}
} ArrayList<Edge> used = new ArrayList<Edge>();
for(int i = 0; i < n; i++) pre[i] = i;
Collections.sort(edge);
int ans = MST(n, edge, used);
for(int s = 1; s < (1<<q); s++) {
for(int i = 0; i < n; i++) pre[i] = i; // 初始化并查集
int remain = n, c = 0;
for(int i = 0; i < q; i++) if((s&(1<<i)) > 0) {
c += cost[i];
for(int t = 1; t < subn[i].size(); t++) {
int pf = seek(subn[i].get(0)), pb = seek(subn[i].get(t));
if(pf == pb) continue;
pre[pf] = pb;
remain--;
}
}
ans = min(ans, c + MST(remain, used, null));
}
System.out.println(ans);
if(T > 0) System.out.println();
}
} public static void main(String args[]) { new Main().MAIN(); }
}

UVa 1151 - Buy or Build(最小生成树)的更多相关文章

  1. UVA 1151 Buy or Build MST(最小生成树)

    题意: 在平面上有n个点,要让所有n个点都连通,所以你要构造一些边来连通他们,连通的费用等于两个端点的欧几里得距离的平方.另外还有q个套餐,可以购买,如果你购买了第i个套餐,该套餐中的所有结点将变得相 ...

  2. UVA 1151 Buy or Build (最小生成树)

    先求出原图的最小生成树,然后枚举买哪些套餐,把一个套餐内的点相互之间边权为0,直接用并查集缩点.正确性是基于一个贪心, 在做Kruskal算法是,对于没有进入最小生成树的边,排序在它前面的边不会减少. ...

  3. UVA 1151 Buy or Build (MST最小生成树,kruscal,变形)

    题意: 要使n个点之间能够互通,要使两点直接互通需要耗费它们之间的欧几里得距离的平方大小的花费,这说明每两个点都可以使其互通.接着有q个套餐可以选,一旦选了这些套餐,他们所包含的点自动就连起来了,所需 ...

  4. uva 1151 - Buy or Build poj 2784 Buy or Build(最小生成树)

    最小生成树算法简单 只是增加了一些新的东西,对于需要最小生成树算法 和中 并检查使用的一系列 还有一些更深入的了解. 方法的一些复杂问题 #include<cstdio> #include ...

  5. UVa 1151 Buy or Build (最小生成树+二进制法暴力求解)

    题意:给定n个点,你的任务是让它们都连通.你可以新建一些边,费用等于两点距离的平方(当然越小越好),另外还有几种“套餐”,可以购买,你购买的话,那么有些边就可以连接起来, 每个“套餐”,也是要花费的, ...

  6. UVa 1151 Buy or Build【最小生成树】

    题意:给出n个点的坐标,现在需要让这n个点连通,可以直接在点与点之间连边,花费为两点之间欧几里得距离的平方,也可以选购套餐,套餐中所含的点是相互连通的 问最少的花费 首先想kruskal算法中,被加入 ...

  7. UVA - 1151 Buy or Build (买还是建)(并查集+二进制枚举子集)

    题意:平面上有n个点(1<=n<=1000),你的任务是让所有n个点连通.可以新建边,费用等于两端点欧几里德距离的平方.也可以购买套餐(套餐中的点全部连通).问最小费用. 分析: 1.先将 ...

  8. UVA 1151 买还是建(最小生成树)

    买还是建 紫书P358 [题目链接]买还是建 [题目类型]最小生成树 &题解: 这题真的心累,看了3天,最后照着码还是wa,先放lrj代码,以后再看吧 &代码: // UVa1151 ...

  9. UVA 1151二进制枚举子集 + 最小生成树

    题意:平面上有n个点(1<=N<=1000),你的任务是让所有n个点连通,为此, 你可以新建一些边,费用等于两个端点的欧几里得距离的平方.另外还有q(0<=q<=8)个套餐(数 ...

随机推荐

  1. Redis 小结

    一.redis简介 redis是一款基于C语言编写的,开源的非关系型数据库,由于其卓越的数据处理机制(按照规则,将常用的部分数据放置缓存,其余数据序列化到硬盘),大家也通常将其当做缓存服务器来使用. ...

  2. Eclipse 常见问题总结

    添加包 1.build path 直接添加 2.在windows-->preferences -> Java -> build path -> classpath variab ...

  3. moment常用操作

    1.返回当前日期截止时的时间戳: post.createtime = moment().unix(); let stime = moment(moment.unix(moment().unix()). ...

  4. spring历史和哲学

    spring 历史: 2004年 Spring Framework 1.0 final 正式问世. 1.在Spring1.x时代,都是通过xml文件配置bean,随着项目的不断扩大,需要将xml配置分 ...

  5. Tomcat服务器使用(一)

    1. Tomcat服务器端口的配置 Tomcat服务器的配置文件主要在conf文件夹中,conf文件夹下的server.xml是配置文件的核心,默认的配置端口是8080,如果想要修改为其他的端口,可在 ...

  6. mysql 远程连接权限

    当你远程连不上时,可能的原因: 1.是否开启了远程连接权限 2.是否启动了mysql服务 使用客户端远程登陆报错: 使用命令行myslq -h192.168.82.23 -uroot -p123456 ...

  7. python之from 和import执行过程分析

    原文链接:http://blog.csdn.net/lis_12/article/details/52883729 问题1 同一个目录下,有两个Python文件,A.py,B.py #A.py fro ...

  8. Effective C++ .44 typename和class的不同

    在C++模板中的类型参数一般可以使用typename和class,两者没有什么不同.但是typename比class多项功能: “任何时候当你想要在template中指涉一个嵌套从属类型名称,就必须在 ...

  9. 深入理解jQuery插件开发总结(二)

    1,开始 可以通过为jQuery.fn增加一个新的函数来编写jQuery插件.属性的名字就是你的插件的名字: jQuery.fn.myPlugin = function(){ //开始写你的代码吧! ...

  10. safari兼容时间格式

    前提: 使用iview的DatePicker组件,保存时间后台接收时间戳 问题: safari中不支持2018-02-13这种格式转为时间戳会显示NaN 解决: new Date('2018/02/1 ...