UVa 1151 - Buy or Build(最小生成树)
链接:
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=3592
题意:
平面上有n个点(1≤n≤1000),你的任务是让所有n个点连通。
为此,你可以新建一些边,费用等于两个端点的欧几里德距离的平方。
另外还有q(0≤q≤8)个“套餐”可以购买,如果你购买了第i个套餐,该套餐中的所有结点将变得相互连通。
第i个套餐的花费为Ci。求最小的花费。
分析:
最容易想到的算法是:先枚举购买哪些套餐,把套餐中包含的边的权值设为0,然后求最小生成树。
由于枚举量为O(2^q),给边排序的时间复杂度为O(n*nlogn),而排序之后每次Kruskal算法的时间复杂度为O(n*n),
因此总时间复杂度为O((2^q)*(n*n)+n*nlogn),对于题目的规模来说太大了。
只需一个小小的优化即可降低时间复杂度:先求一次原图(不购买任何套餐)的最小生成树,
得到n-1条边,然后每次枚举完套餐后只考虑套餐中的边和这n-1条边,
则枚举套餐之后再求最小生成树时,图上的边已经寥寥无几。
为什么可以这样呢?首先回顾一下,在Kruskal算法中,哪些边不会进入最小生成树。
答案是:两端已经属于同一个连通分量的边。买了套餐以后,相当于一些边的权变为0,
而对于不在套餐中的每条边e,排序在e之前的边一个都没少,反而可能多了一些权值为0的边,
所以在原图Kruskal时被“扔掉”的边,在后面的Kruskal中也一样会被扔掉。
代码:
import java.io.*;
import java.util.*;
import static java.lang.Math.*; public class Main {
Scanner cin = new Scanner(new BufferedInputStream(System.in));
final int UP = 1000 + 5;
int pre[] = new int[UP];
int x[] = new int[UP], y[] = new int[UP], cost[] = new int[UP]; class Edge implements Comparable<Edge> {
int f, b, v; @Override
public int compareTo(Edge that) {
return v - that.v;
}
} int seek(int v) {
return pre[v] == v ? v : (pre[v] = seek(pre[v]));
} int MST(int n, ArrayList<Edge> e, ArrayList<Edge> res) {
if(n <= 1) return 0;
int m = e.size(), ans = 0;
for(int i = 0; i < m; i++) {
int pf = seek(e.get(i).f), pb = seek(e.get(i).b);
if(pf == pb) continue;
pre[pf] = pre[pb];
ans += e.get(i).v;
if(res != null) res.add(e.get(i));
if(--n == 1) break;
}
return ans;
} void MAIN() {
int T;
T = cin.nextInt();
while(T --> 0) {
@SuppressWarnings("unchecked")
ArrayList<Integer> subn[] = new ArrayList[8];
for(int i = 0; i < 8; i++) subn[i] = new ArrayList<Integer>();
int n = cin.nextInt();
int q = cin.nextInt();
for(int m, i = 0; i < q; i++) {
m = cin.nextInt();
cost[i] = cin.nextInt();
for(int t = 0; t < m; t++) subn[i].add(cin.nextInt()-1);
}
for(int i = 0; i < n; i++) {
x[i] = cin.nextInt();
y[i] = cin.nextInt();
} ArrayList<Edge> edge = new ArrayList<Edge>();
for(int i = 0; i < n; i++) {
for(int t = i+1; t < n; t++) {
Edge e = new Edge();
e.f = i; e.b = t;
e.v = (x[i]-x[t])*(x[i]-x[t]) + (y[i]-y[t])*(y[i]-y[t]);
edge.add(e);
}
} ArrayList<Edge> used = new ArrayList<Edge>();
for(int i = 0; i < n; i++) pre[i] = i;
Collections.sort(edge);
int ans = MST(n, edge, used);
for(int s = 1; s < (1<<q); s++) {
for(int i = 0; i < n; i++) pre[i] = i; // 初始化并查集
int remain = n, c = 0;
for(int i = 0; i < q; i++) if((s&(1<<i)) > 0) {
c += cost[i];
for(int t = 1; t < subn[i].size(); t++) {
int pf = seek(subn[i].get(0)), pb = seek(subn[i].get(t));
if(pf == pb) continue;
pre[pf] = pb;
remain--;
}
}
ans = min(ans, c + MST(remain, used, null));
}
System.out.println(ans);
if(T > 0) System.out.println();
}
} public static void main(String args[]) { new Main().MAIN(); }
}
UVa 1151 - Buy or Build(最小生成树)的更多相关文章
- UVA 1151 Buy or Build MST(最小生成树)
题意: 在平面上有n个点,要让所有n个点都连通,所以你要构造一些边来连通他们,连通的费用等于两个端点的欧几里得距离的平方.另外还有q个套餐,可以购买,如果你购买了第i个套餐,该套餐中的所有结点将变得相 ...
- UVA 1151 Buy or Build (最小生成树)
先求出原图的最小生成树,然后枚举买哪些套餐,把一个套餐内的点相互之间边权为0,直接用并查集缩点.正确性是基于一个贪心, 在做Kruskal算法是,对于没有进入最小生成树的边,排序在它前面的边不会减少. ...
- UVA 1151 Buy or Build (MST最小生成树,kruscal,变形)
题意: 要使n个点之间能够互通,要使两点直接互通需要耗费它们之间的欧几里得距离的平方大小的花费,这说明每两个点都可以使其互通.接着有q个套餐可以选,一旦选了这些套餐,他们所包含的点自动就连起来了,所需 ...
- uva 1151 - Buy or Build poj 2784 Buy or Build(最小生成树)
最小生成树算法简单 只是增加了一些新的东西,对于需要最小生成树算法 和中 并检查使用的一系列 还有一些更深入的了解. 方法的一些复杂问题 #include<cstdio> #include ...
- UVa 1151 Buy or Build (最小生成树+二进制法暴力求解)
题意:给定n个点,你的任务是让它们都连通.你可以新建一些边,费用等于两点距离的平方(当然越小越好),另外还有几种“套餐”,可以购买,你购买的话,那么有些边就可以连接起来, 每个“套餐”,也是要花费的, ...
- UVa 1151 Buy or Build【最小生成树】
题意:给出n个点的坐标,现在需要让这n个点连通,可以直接在点与点之间连边,花费为两点之间欧几里得距离的平方,也可以选购套餐,套餐中所含的点是相互连通的 问最少的花费 首先想kruskal算法中,被加入 ...
- UVA - 1151 Buy or Build (买还是建)(并查集+二进制枚举子集)
题意:平面上有n个点(1<=n<=1000),你的任务是让所有n个点连通.可以新建边,费用等于两端点欧几里德距离的平方.也可以购买套餐(套餐中的点全部连通).问最小费用. 分析: 1.先将 ...
- UVA 1151 买还是建(最小生成树)
买还是建 紫书P358 [题目链接]买还是建 [题目类型]最小生成树 &题解: 这题真的心累,看了3天,最后照着码还是wa,先放lrj代码,以后再看吧 &代码: // UVa1151 ...
- UVA 1151二进制枚举子集 + 最小生成树
题意:平面上有n个点(1<=N<=1000),你的任务是让所有n个点连通,为此, 你可以新建一些边,费用等于两个端点的欧几里得距离的平方.另外还有q(0<=q<=8)个套餐(数 ...
随机推荐
- 常用工具说明--Git和GitHub简明教程
一.Git的主要功能:版本控制 版本:想想你平时用的软件,在软件升级之后,你用的就是新版本的软件.你应该见过这样的版本号:v2.0 或者 1511(表示发布时为15年11月),如下图:那么如果你修改并 ...
- dozer 简单用法
maven添加必要的库: <!-- https://mvnrepository.com/artifact/net.sf.dozer/dozer --> <dependency> ...
- RabbitMQ - 介绍
RabbitMQ是个健壮.易用.开源.支持多种操作系统和语言的message broker. 当然,一切的前提是机器里面正在运行着rabbitmq-server. 点击下面的图片下载: rabbitM ...
- git config简写命令
在多人协作开发时,一般用git来进行代码管理.git有一些命令如:git pull . git push等等,这些命令可以设置alias,也就是缩写.如:git pull 是 git pl, git ...
- my docker note
环境: docker1.10.3 #hello docker docker run --name myhello docker.io/centos:67591570dd29 /bin/echo 'he ...
- JBPM学习第2篇:为Eclipse添加JBPM开发支持
1.Eclipse添加JBoss支持插件 参考:Eclipse添加JBoss支持 若已安装,直接跳过! 2.Eclipse添加Drools插件 jbpm-installer-full解压后的文件夹中找 ...
- C 堆内存管理
在Win32 程序中每个进程都占有4GB的虚拟地址空间,这4G的地址空间内部又被分为代码段,全局变量段堆段和栈段,栈内存由函数使用,用来存储函数内部的局部变量,而堆是由程序员自己申请与释放的,系统在管 ...
- div居中方式
1. position: absolute; top:50%:left: 50%; margin-top: -高度的一半; margin-left: -宽度的一半(此方法适用于固定宽高的元素) 注: ...
- (转) AJAX POST&跨域 解决方案 - CORS
跨域是我在日常面试中经常会问到的问题,这词在前端界出现的频率不低,主要原因还是由于安全限制(同源策略, 即JavaScript或Cookie只能访问同域下的内容),因为我们在日常的项目开发时会不可避免 ...
- Spring中无法访问resources目录下页面或静态资源
1.新建项目,在 resources 目录下创建 views 目录,在 views 目录下创建 index.html 页面,项目跑起来,浏览器访问页面,提示找不到页面之类的错误提示. 2.再尝试访问图 ...