[NOIP2016 TG D2T3]愤怒的小鸟
题目大意:有一架弹弓位于(0,0)处,每次可以用它向第一象限发射一只小鸟,飞行轨迹均为形如y=ax2+bxy=ax+bx2 y=ax2+bx的曲线,且必须满足a<0(即是下开口的)
平面的第一象限中有n只绿色的小猪,其中第i只小猪所在的坐标为(xi,yi)。
如果某只小鸟的飞行轨迹经过了(xi,yi),那么第i只小猪就会被消灭掉,同时小鸟将会沿着原先的轨迹继续飞行;
求至少需要发射多少只小鸟才能消灭所有的小猪。(多组数据)
题解思路:
可以枚举每两只小猪,如果可以用一条抛物线经过(即y[i]≠y[j],且求出的a<0),那么把它记录下来,并且枚举其他小猪,如果可以顺带打掉,那么就压位记录一下,然后bfs(压位)枚举要打的猪,并把可以顺带打掉的猪打掉,就可以求出答案
C++ Code:
#include<cstdio>
#include<cstring>
using namespace std;
const double eps=1e-12;
int T,n,m;
double x[18],y[18],a,b;
int step[1<<18],t,w,q[1<<18];
bool can[18][18],v[1<<18];
int remain[18][18];
double abs(double a){return a>0?a:-a;}
int main(){
scanf("%d",&T);
while (T--){
scanf("%d%d",&n,&m);
for (int i=0;i<n;i++)scanf("%lf%lf",&x[i],&y[i]);
for (int i=0;i<n;i++){
for (int j=0;j<n;j++){
can[i][j]=0;
remain[i][j]=(1<<n)-1;
if (i==j)continue;
if (x[i]==x[j])continue;
a=(y[i]*x[j]-y[j]*x[i])/(x[i]*x[i]*x[j]-x[j]*x[j]*x[i]);
if (a>=0)continue;
b=(x[i]*x[i]*y[j]-x[j]*x[j]*y[i])/(x[i]*x[i]*x[j]-x[j]*x[j]*x[i]);
can[i][j]=1;
remain[i][j]=(1<<n)-1;
for (int k=0;k<n;k++)if (abs(a*x[k]*x[k]+b*x[k]-y[k])<eps)remain[i][j]-=1<<k;
}
}
t=0;
memset(step,0,sizeof step);
memset(v,0,sizeof v);
step[q[w=1]=(1<<n)-1]=0;
v[(1<<n)-1]=1;
while (t<w){
int x=q[++t];
int i;
for (i=0;i<n;i++)if (x&(1<<i))break;
if (!v[x^(1<<i)]){
v[q[++w]=x^(1<<i)]=1;
step[x^(1<<i)]=step[x]+1;
}
for(int j=i+1;j<n;j++){
if ((x&(1<<j))&&(!(v[x&remain[i][j]]))&&can[i][j]){
step[q[++w]=(x&remain[i][j])]=step[x]+1;
v[x&remain[i][j]]=1;
}
}
}
printf("%d\n",step[0]);
}
return 0;
}
[NOIP2016 TG D2T3]愤怒的小鸟的更多相关文章
- 【NOIP题解】NOIP2017 TG D2T3 列队
列队,NOIP2017 TG D2T3. 树状数组经典题. 题目链接:洛谷. 题意: Sylvia 是一个热爱学习的女孩子. 前段时间,Sylvia 参加了学校的军训.众所周知,军训的时候需要站方阵. ...
- NOIP2016 D2-T3 愤怒的小鸟
看了题解之后知道,是状压dp. 一.首先预处理一个$2^n$次方的fpow[]数组 fpow[]=; ;i<=;i++)fpow[i]=(fpow[i-]<<); 二.然后预处理一个 ...
- NOIp2016 D2T3 愤怒的小鸟【搜索】(网上题解正解是状压)
题目传送门 没啥别的想法,感觉就是搜索,经过原点的抛物线已知两个点就可以求出解析式,在还没有被打下来的两个猪之间随意配对,确定解析式之后标记在这个抛物线下被打下来的猪. 猪也可以单独用一个抛物线打下来 ...
- [luogu2831][noip d2t3]愤怒的小鸟_状压dp
愤怒的小鸟 noip-d2t3 luogu-2831 题目大意:给你n个点,问最少需要多少条经过原点的抛物线将其覆盖. 注释:1<=点数<=18,1<=数据组数<=30.且规定 ...
- [NOIP2017 TG D2T3]列队
题目大意:有一个$n \times m$的方阵,第$i$行第$j$列的人的编号是$(i-1) \times m + j$. 现在有$q$个出列操作,每次让一个人出列,然后让这个人所在行向左看齐,再让最 ...
- [NOIP2015 TG D2T3]运输计划
题目大意: 给你一棵n个节点的树,有边权,有多个任务,每个要求从ui号节点到 vi号节点去.m 个计划, 这 m 个计划会同时开始.当这 m 个任务都完成时,工作完成. 现在可以把任意一个边的边权变为 ...
- [NOIp2016提高组]愤怒的小鸟
题目大意: 平面直角坐标系的第一象限有n(n<=18)个点,你可以每次给出一个形如y=ax^2+bx的函数把经过这条函数的点消掉,问消掉所有的点至少要多少函数? 思路: 枚举每两个点对,可以唯一 ...
- NOIP2016 DAY2 T3 愤怒的小鸟
传送门 题目描述 Kiana 最近沉迷于一款神奇的游戏无法自拔. 简单来说,这款游戏是在一个平面上进行的. 有一架弹弓位于 (0,0)(0,0) 处,每次 Kiana 可以用它向第一象限发射一只红色的 ...
- Noip2016 总结&反思
一直在期盼的联赛,真正来临时,却远不像我想象的样子. 有些事,真的不敢再想. 算法可以离线,时光却不能倒流.dfs可以回溯,现实却没有如果. 有些事,注定只能成为缺憾,抱恨终生. 不得不说今年Noip ...
随机推荐
- 创龙DSP6748学习之RS485收发
1. 先看下原理图,第一个问题,RS485其实就是使用的串口USART1,同时485的输出脚之间接120欧姆的电阻. 遇到个问题,为什么有两个使能引脚?还有RS485_A和RS485_B为什么分别接上 ...
- 问题:MongoDB C# driver异常:Truncation resulted in data loss
问题描述: 原因分析: MongoDB C#驱动在读取数据记录遇到数值类型字段时,如果没有设置允许截断,将抛出TruncationException. 解决方法: [BsonRepresentatio ...
- Linux命令应用大词典-第40章 网络客户端
40.1 elinks:字符模式的Web浏览器 40.2 wget:从Web网站下载文件 40.3 curl:传输URL 40.4 lynx:通用分布式信息的万维网浏览器 40.5 lftp:实现文件 ...
- EF中如何为表添加新的字段和映射
首先先了解一下ef生成的模型edmx的代码,传送门:http://www.cnblogs.com/yushengbo/p/4807715.html 一.添加新的字段 例子就用我现在项目的这个吧,首先在 ...
- FFM
转载自http://blog.csdn.net/jediael_lu/ https://blog.csdn.net/jediael_lu/article/details/77772565 点击率预估算 ...
- 对int类型最小值INT_MIN取负值结果不变
在32位系统中,int类型的最大值是0x7fffffff(即除了最高的1Bit其他31位都为1),而最小值是0x80000000(除了最高1bit,其他31位都为0). 显然,对于最小值求负数是不存在 ...
- Java抽象与接口的区别
Java抽象与接口的区别 答案方式一.简单来说,1.接口是公开的,里面不能有私有的方法或变量,是用于让别人使用的,而抽象类是可以有私有方法或私有变量的, 2.另外,实现接口的一定要实现接口里定义的所有 ...
- POJ 2208 Pyramids(求四面体体积)
Description Recently in Farland, a country in Asia, a famous scientist Mr. Log Archeo has discovered ...
- Sublime Text 插件推荐——for web developers
楼主向高大上的: web front-end development engineer (好吧,google就是这样翻译的 ^_^)们推荐 ST 插件,在此抛砖引玉: NO.1 :Emmet (原名: ...
- 最小生成树——prim
prim:逐“点”生成最小生成树 与Dijkstra不同的是:加入点到生成树中,不要考虑与源点的距离,而是考虑与生成树的距离 #include <iostream> #include &l ...