AtCoder Grand Contest 031 B - Reversi(DP)
B - Reversi
题目链接:https://atcoder.jp/contests/agc031/tasks/agc031_b
题意:
给出n个数,然后现在你可以对一段区间修改成相同的值,前提是左右端点的值相同。问最后这n个数有多少种不同的值。
题解:
设dp[i]表示只考虑1~i这段,有多少不同的值。然后对于当前第i位,有两种选择,修改或者不修改,不修改的话就是dp[i-1];修改的话就是dp[k],这里k表示上一个相同颜色的位置。
注意一下如果i-1和i的颜色相同,当前要跳过,这个时候考虑修改是没有意义的。
代码如下:
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 2e5 + , MOD = 1e9 + ;
int n;
int c[N];
ll dp[N], sum[N];
int main() {
ios::sync_with_stdio(false);
cin.tie();
cin >> n;
for(int i = ; i <= n; i++)
cin >> c[i];
dp[] = ;
for(int i = ; i <= n; i++) {
if(c[i] == c[i - ]) {
dp[i] = dp[i - ];
continue ;
}
dp[i] = (dp[i - ] + sum[c[i]]) % MOD;
sum[c[i]] = dp[i];
}
cout << dp[n];
return ;
}
AtCoder Grand Contest 031 B - Reversi(DP)的更多相关文章
- Atcoder Grand Contest 033 D - Complexity(dp)
Atcoder 题面传送门 & 洛谷题面传送门 首先 \(n^5\) 的暴力非常容易想,设 \(dp_{a,b,c,d}\) 表示以 \((a,b)\) 为左上角,\((c,d)\) 为右下角 ...
- AtCoder Grand Contest 031 B - Reversi
https://atcoder.jp/contests/agc031/tasks/agc031_b B - Reversi Time Limit: 2 sec / Memory Limit: 1024 ...
- Atcoder Grand Contest 021 F - Trinity(dp+NTT)
Atcoder 题面传送门 & 洛谷题面传送门 首先我们考虑设 \(dp_{i,j}\) 表示对于一个 \(i\times j\) 的网格,其每行都至少有一个黑格的合法的三元组 \((A,B, ...
- Atcoder Regular Contest 089 D - ColoringBalls(DP)
Atcoder 题面传送门 & 洛谷题面传送门 神仙题. 在下文中,方便起见,用 R/B 表示颜色序列中球的颜色,用 r/b 表示染色序列中将连续的区间染成的颜色. 首先碰到这一类计算有多少个 ...
- AtCoder Grand Contest 032-B - Balanced Neighbors (构造)
Time Limit: 2 sec / Memory Limit: 1024 MB Score : 700700 points Problem Statement You are given an i ...
- AtCoder Grand Contest 031 简要题解
AtCoder Grand Contest 031 Atcoder A - Colorful Subsequence description 求\(s\)中本质不同子序列的个数模\(10^9+7\). ...
- UPC个人训练赛第十五场(AtCoder Grand Contest 031)
传送门: [1]:AtCoder [2]:UPC比赛场 [3]:UPC补题场 参考资料 [1]:https://www.cnblogs.com/QLU-ACM/p/11191644.html B.Re ...
- AtCoder Grand Contest 012 B - Splatter Painting(dp)
Time limit : 2sec / Memory limit : 256MB Score : 700 points Problem Statement Squid loves painting v ...
- Atcoder Grand Contest 001E - BBQ Hard(组合意义转化,思维题)
Atcoder 题面传送门 & 洛谷题面传送门 Yet another 思维题-- 注意到此题 \(n\) 数据范围很大,但是 \(a_i,b_i\) 数据范围很小,这能给我们什么启发呢? 观 ...
随机推荐
- 使用SpringBoot整合ssm项目
SpringBoot是什么? Spring Boot是由Pivotal团队提供的全新框架,其设计目的是用来简化新Spring应用的初始搭建以及开发过程. Spring Boot 现在已经成为Java ...
- [python]np.loadtxt报错
np.loadtxt报错 通过pandas生成的cvs数据利用nump.loadtxt读取的时候 tmp = np.loadtxt('test.csv', dtype=np.str, delimite ...
- Docker容器的搭建
Docker容器的搭建 一.先从Docker Hub上面拉取一个基础镜像 命令:docker pull ubuntu 命令说明:pull:拉取镜像的命令,ubuntu:拉取镜像的名称 扩展命令: 命令 ...
- Java简单工厂模式
Java简单工厂模式 在阎宏博士的<JAVA与模式>一书中开头是这样描述简单工厂模式的:简单工厂模式是类的创建模式,又叫做静态工厂方法(Static Factory Method)模式.简 ...
- 四:HDFS Snapshots
1.介绍 HDFS快照保存某个时间点的文件系统快照,可以是部分的文件系统,也可以是全部的文件系统.快照用来做数据备份和灾备.有以下特点: 1.快照几乎是实时瞬间完成的 2.只有在做快照时文件系统有修改 ...
- POJ 2449 Remmarguts' Date(第k短路のA*算法)
Description "Good man never makes girls wait or breaks an appointment!" said the mandarin ...
- Python中package的导入语法
在Python中,一个目录被称为一个package.import和from语法除了导入module文件之外,还可以导入package,语法如下: # import语法 import dir1.dir2 ...
- 软件工程 作业part1
自我介绍 老师您好,我叫宋雨,本科在长春理工大学,专业是计算机科学与技术. 1.回想一下你曾经对计算机专业的畅想:当初你是如何做出选择计算机专业的决定?你认为过去接触的课程是否符合你对计算机专业的期待 ...
- 第二十一次ScrumMeeting会议
第二十一次Scrum Meeting 时间:2017/12/11 地点:SPR咖啡馆 人员:王子铭 游心 解小锐 王辰昱 李金奇 杨森 陈鑫 赵晓宇 照片: 目前工作进展 名字 今日 明天的工作 蔡帜 ...
- PCA算法理解及代码实现
github:PCA代码实现.PCA应用 本文算法均使用python3实现 1. 数据降维 在实际生产生活中,我们所获得的数据集在特征上往往具有很高的维度,对高维度的数据进行处理时消耗的时间很大, ...